Bycatch, Utilization, and Discards in the Commercial Groundfish Fisheries of the Gulf of Alaska, Eastern Bering Sea, and Aleutian Islands

by
L. E. Queirolo, L. W. Fritz, P. A. Livingston, M. R. Loefflad, D. A. Colpo, and Y. L. deReynier ${ }^{1}$
Alaska Fisheries Science Center'
7600 Sand Point Way N.E., BIN C-15700
Seattle, WA 98115-0070
University of Washington ${ }^{1}$
School of Fisheries WH-10
Seattle WA 98195
Current mailing address:
Fisheries Management Division
Northwest Regional Office
7600 Send Point Way N.E.. BIN C-I 5700. Bldg. 1
\section*{U.S. DEPARTMENT OF COMMERCE}
Ronald H. Brown, Secretary
National Oceanic and Atmospheric Administration
D. James Baker, Under Secretary and Administrator National Marine Fisheries Service
Roland A. Schmitten, Assistant Administrator for Fisheries

This document is available to the public through:
National Technical Information Service
U.S. Department of Commerce

5285 Port Royal Road
Springfield, VA 22161

Abstract

Total harvest, bycatch, catch utilization, and discards are currently the subjects of considerable attention and debate worldwide. This report documents reported catch, bycatch, utilization, and discard data and attempts to identify patterns and trends in the commercial groundfish fisheries of the Gulf of Alaska (GOA), eastern Bering Sea, and Aleutian Islands (BSAI) (areas which currently make up the United States' Exclusive Economic Zone off Alaska). The report identifies existing data sources and examines the historical catch record, as well as current domestic groundfish fisheries in these areas.

Many factors have contributed to the increased interest in this issue. Among these are: 1) improvements in understanding of basic ecological relationships and fish stock dynamics; 2) changes in fishing effort, capacity, and technology; 3) the increasing economic and market importance of these fisheries; and 4) changes in management capability and authority (e.g., extension by the United States of exclusive management authority under the Magnuson Fishery Conservation and Management Act of 1976).

There are many reasons why groundfish fisheries discard groundfish. Among these are: 1) the directed fishery for a given species, say species A, may be closed (due to quota or other restrictions) forcing all other fisheries which catch species A as bycatch to discard it; 2) individual fish in the catch are too small or large for mechanical processors, or are the wrong sex (e.g., males in the rock sole roe fishery); 3) to change the species composition of their total catch for the reporting week, preventing the vessel from being considered a "participant" in a particular fishery for that week, and as such, subject to different, possibly more stringent, prohibited species bycatch rate standards set by the North Pacific Fishery Management Council; 4) a lack of handling or processing capacity aboard the vessel; or 5) market limitations on the utilization or retention of certain species. Particularly for various roundfish fisheries (e.g. walleye pollock, Pacific cod, Atka mackerel and rockfish), the size composition of the target species population can greatly affect the rate of discard by the fishery. If a prerecruited year class is very strong, large catches of fish too small for market may be unavoidable, increasing the rate of discard. Discards are subtracted from catch tonnage prior to calculation of product recovery rates, but discarded fish are included as part of the total harvest.

An analysis, based upon Weekly Product Reports for 1994, suggest that for all GOA and BSAI groundfish fisheries combined, approximately 15% of the total catch was discarded in-theround. Significantly, the weight of offal returned to the sea was nearly four times as great as the weight of discards. About 70\%) by weight, of "target" catch is returned to the sea as offal; offal discharges make up almost 60% of "total" catch. Thus, when considering energy transfer in the ecosystem, offal production vastly overshadows discard amounts.

Groundfish discards may have unanticipated and/or undesirable economic implications. Bycatch discards may, for example, impose direct economic costs on competing groundfish fisheries in the form of foregone catches. Through a series of simplifying assumptions, it was possible to estimate the "opportunity cost" (as measured at the first wholesale level) to target fisheries of the foregone catch, attributable to groundfish bycatch discards in individual BSAI and GOA fisheries.

In 1994, all BSAI groundfish fisheries discarded an aggregate total of 162,161 metric tons (t) of allocated groundfish species for which the total allowable catch was binding. The opportunity cost of these discards exceeded $\$ 91,848,000$. The total retained catch of all groundfish species in these fisheries was just over $1,699,500 \mathrm{t}$ and had a value which exceeded $\$ 925,229,800$. Thus, the ratio of the value of retained catch to discards (Retained/Discard Value Ratio), weighted by fishery, across all BSAI groundfish fisheries, was 10.1. That is,
for each dollar of bycatch "opportunity cost" imposed, $\$ 10.10$ of output was produced from retained catch. Individual rates varied from a high of $\$ 29.2$ in the pollock target fishery, to a low of $\$ 2.4$ in the "other" groundfish target fishery. In the GOA groundfish fisheries, equivalent discards totaled $15,685 \mathrm{t}$. The opportunity cost of these discards exceeded $\$ 14,661,597$. Total retained catch of all groundfish species in these fisheries was just over $196,588 \mathrm{t}$ and had a value which exceeded $\$ 235,825,000$. Thus, the Retained/Discard Value Ratio, weighted by fishery across all GOA groundfish fisheries, was 16.1. That is, for each dollar of bycatch "opportunity cost" imposed, $\$ 16.10$ of output was produced from retained catch. Individual rates varied from a high of 45.4 in the sablefish target fishery, to a low of 3.4 in the arrowtooth flounder target fishery.

Groundfish discards may also impact markets by affecting product form, supply, and price which, in turn, influence international seafood trade and U.S. market share.

Contents

Abstract iii
Introduction 1
Trends in Bycatch, Utilization, and Discards, 1972-94 4
Foreign, Joint Venture, and Domestic Fisheries, 1972-90 4
Data Sources and Table Summaries 4
Discussion of Trends 5
Catch, Bycatch, and Discard by the Domestic Groundfish Fisheries 1990-94 6
Data Sources and Table Summaries 6
Groundfish and Other Allocated Species: Catch Trends 8
Prohibited Species: Catch Trends 9
Other Species: Catch Trends 9
Bycatch Discard Mortality 71
Review of Literature on Discard Mortality 71
Gear-Related Factors Influencing Mortality 71
Other Factors Influencing Discard Mortality 75
Discard Mortalities in North Pacific Groundfish Fisheries 76
Ecological Impacts 85
Effects of Selective Fishing 85
Consumers of Discards and Fish Processing Offal 88
Unobserved Mortalities 95
Catch Utilization 98
Product Forms 98
Limits on Production 102
Technical Limitations 102
Market Limitations 104
Product Recovery Rates (PRRs) 106
Product Recovery Rates Variability in the Field 111
Markets and Estimated Product Value 112
Groundfish Exports 112
Factors Influencing Trade 125
Estimating the Opportunity Cost of Bycatch 129
Citations 143

Introduction

Total harvest, catch utilization, bycatch, and discard levels have become increasingly important considerations in the monitoring and management of the commercial fisheries in the Gulf of Alaska and Bering Sea. This report documents reported catch, bycatch, utilization, and discard data and attempts to identify patterns and trends in the commercial groundfish fisheries of the Gulf of Alaska (GOA), eastern Bering Sea, and Aleutian Islands area (combined in BSAI), areas which currently make up the U.S. Exclusive Economic Zone (EEZ) off Alaska.The report also identifies existing data sources and examines the historical catch record, as well as current domestic groundfish fisheries in these areas.

Concern about total catch; bycatch, and discards in the groundfish fisheries of the North Pacific and Bering Sea has increased over time. Many factors have contributed to the progressive increase in interest in this issue, including improvements in our understanding of basic ecological relationships and fish stock dynamics; changes in fishing effort, capacity, and technology; the increasing economic and market importance of these fisheries; and changes in management capability and authority, (e.g., extension by the United States of exclusive management authority under the Magnuson Fishery Conservation and Management Act of 1976).

Because changes in fishery management and fishing practices have occurred in the last 20 years, empirical data on catch, utilization, and discards are not of uniform quality or detail and come from a variety of sources. For example, data sources for the U.S. groundfish fisheries off Alaska include the National Marine Fisheries Service (NMFS) Observer Program, the State of Alaska Fish Ticket Database, and the Weekly Production Reports (submitted by the industry). In general, however, these data increase in detail and reliability with time. This report relies upon these various and variable data sources. The relative strengths and limitations of particular data sources are noted.

Finally, we attempt to identify patterns and trends in the important commercial groundfish fisheries in the EEZ off Alaska, and place them within a broader ecological, biological, and economic context. In this way, the possible implications of changes in total catch, bycatch, utilization, and discards may be more fully understood in terms of 1) their impacts on individual fish stocks, 2) the linkages to domestic and world markets and, 3) the general health of the North Pacific ecosystem.

Our report is intended for a general audience, including participants in these fisheries, resource managers, and U.S. citizens, who have an ownership stake in the wise and efficient utilization of these valuable living marine resourceSthe report reveals, in general terms,
how and by whom these resources have historically been exploited; how these patterns have evolved over time; and what ecological, biological, and economic trade-offs may be involved in their future use. The analysis presented and conclusions drawn should be regarded as preliminary and subject to modification as improved data become available.

There is an array of data available on the North Pacific groundfish fisheries. These sources include processor catch reports, processor production reports, State of Alaska fish tickets, and NMFS observer data. While there are several data sources available on historic catch, none stands alone as the definitive source of groundfish harvest amounts. For example, State of Alaska fish tickets provide a detailed synopsis of groundfish landings from Alaska waters, but do not cover all of these vessels which process their fish at sea. In turn, observer data is very useful, but observer coverage is not 100% for all vessels, nor are all fish observed on any given vessel. Assumptions must be made about unobserved catch. Each year since records have been kept on the groundfish fisheries, NMFS has used available data sources to estimate the annual groundfish catch. This paper relies heavily on those annual estimates. All catch estimates presented represent the best estimates based on the data available from various sources during any given year. In general terms, data on bycatch, utilization, and discard have also improved over time, yet continue to have some limitations,

Historically, Alaska groundfish were taken primarily by distant-water fishing fleets from several nations with only limited United States participation in the Pacific cod (Gadus mucrocephalus) fishery. Initial estimates of catch for the foreign vessels were from the vessel's own reports of catch amounts. While data exist for the years prior to 1977, they are unverified and should be used with appropriate caution. In 1977, an onboard United States observer program was implemented to collect independent data on catch quantities and composition. This program developed and expanded such that by the early 1980s, large portions of the fishing fleets were covered by observers. This increased coverage provided two sources of catch data: observer catch estimates combined with the results of catch composition sampling and vessel catch reports. Both reports were incorporated into models to best estimate catches (Nelson et al. 1981).

The nature of the participants in the fisheries changed in the early 1980s as joint venture (JV) operations between United States and foreign nations developed. In JV fisheries, domestic catcher vessels harvested fish and delivered them to foreign vessels for processing. These JV operations eventually displaced the directed foreign vessels as the fishery moved toward "Americanization." The data sources used to estimate total catch, however, remained essentially the same. Vessel catch reports were used in concert with onboard observer reports to estimate catch by species.

By the mid-1980s a domestic processing fleet began to develop. Initially, this domestic-fleet was not required by regulation to carry observers and the only catch estimates available were from unverified vessel reports and a limited voluntary observer program. In 1990, a mandatory domestic observer program was implemented to provide observer coverage over a broad segment of the fleet. The implementation of this domestic observer program coincided with regulations mandating production and discard reporting for all processors. In the transition to the domestic fleet, observer data recording procedures were modified to include estimations of the portions of the catches by species and species group which were discarded and retained.

Throughout the course of the foreign, JV, and domestic groundfish fisheries, the primary focus of data collection activities has been on ascertaining the total catch by species or species group. The emphasis on total catches is due to the need to quantify removals and manage fishery quotas--this focus in data collection continues today.

Less emphasis has been placed on the disposition of catch after harvest. The data available to distinguish between retained and discarded components of catch is limited and only provides a rough approximation of what happened to the components of the total catch.

Prior to 1990, no verified data were collected on discard amounts of catch although we can make certain assumptions about particular species groups. For example, we assume that species whose retention was prohibited were routinely discarded. These include Pacific salmon (O ncorhynchus spp.), Pacific halibut (Hippoglossus stenolepis), king (Paralithodes spp.) and Tanner (Lithodes spp.) crabs, and Pacific herring (Clupea pallasii). Similarly, catches of species lumped together in the "other" groundfish species category, which includes sharks and skates (Elasmobranchi), sculpins (Cottidae), grenadiers (Macrouridae), and smelts (Osmeridae) are assumed to have been largely discarded.

Since 1990, two sources of discard and retained catch data are available; weekly production reports and domestic observer data. The derivation of discard and retained amounts of catch from each source warrants explanation. Weekly production reports are submitted by industry and report the amounts and types of fish products produced for that reporting week, by management area and gear type. The fish products are converted by NMFS to a round weight equivalent by dividing them by an appropriate product recovery rate (PRR). This provides an estimate of retained catch. Included with the production information is the vessel's own estimate of the round weight of fish discarded. Summing the two components, discard and retained, provides an estimate of total catch by species from processor information.

Observers, in turn, first estimate the total catch by tow or set. They then sample a subset of these catches to estimate the species composition. NMFS applies the sampled composition to the catch estimates to provide an estimate of catch by species. Within the composition sampling, observers also report the proportions of fish, by species and species groups, that they judge were discarded by the vessel's personnel. These observer discard/retained proportions are also applied to the total catch estimates. It is important to note that the observer estimates of the retained/discard percentages are roughly gauged based on what they see happening, on the vessel. Discard percentages are difficult to estimate because discards occur in many ways and places on vessels. Deriving this discard percentage is secondary to the primary work of an observer, which is obtaining total catch and composition sampling data. Thus, observer-derived discard estimates are provided as a rough gauge and are not to be considered absolute. Vessel estimates of discard suffer from similar difficulties in estimation.

In the 1990 domestic data, total domestic groundfish catch and discard amounts are based only on the weekly production reports submitted by industry. The amounts of prohibited species are estimated by applying observed rates to the total catch estimate derived from the production reports. All of the prohibited species amounts were discarded.

Catch estimates from 1991-1994 utilize both observer data and vessel data in a "blend" model. Thus, the catch data represent a combination of the two data sources. However, changes have been made to the blend model over time. Catch reported in this paper for these 4 years is based on the 1994 blend model applied to each year's respective data. Thus, these catch estimates may differ from those used to manage the fishery, and those reported in a variety of other sources. Last, this 1994 model uses observer data from shoreside delivering vessels to estimate the proportion of catch which is discarded at sea prior to delivery. This proportion is added to reported landings to estimate total catch.

Trends in Bycatch, Utilization, and Discards, 1972-94

Foreign, Joint Venture, and Domestic Fisheries, 1972-90

Data Sources and Table Summaries -- The data presented are NMFS' best estimates of catch for each year that data exist for the foreign and joint venture fisheries. Foreign data for the years 1972-1976 are as reported by Murai et al. (1981) and Forrester et al. (1983). Foreign and JV catch statistics for the years 1977-1990 are as reported in Berger et al. (1986), Berger et al. (1987), Berger et al. (1988), Berger and Weikart (1988), Berger and Weikart (1989), Guttormsen et al. (1990), and Guttormsen et al. (1992). Prior to 1990, domestic catch is
based on the Pacific Fisheries Information Network (project of the Pacific States Marine Fisheries Commission, Gladstone, OR) landings data derived from processor vessel estimates and State of Alaska fish tickets as reported in Kinoshita et al. (1995); domestic catches of Pacific cod from 1977-83 were obtained from Thompson (1994) and Thompson and Zenger (1994). Since 1977, observer data were available and incorporated in catch estimation. These procedures are described by Nelson et al. (1981), with updates by Berger et al. (1986). These estimates of total catch (both retained and discarded) are summarized in Tables 1 and 2; no data exist on the proportion discarded. Since the catch data from. 1972-1976 rely solely on numbers supplied by foreign nations, data on fish removals should not be considered as accurate as data collected from foreign, joint-venture, and domestic operations when U.S. observers were on a large percentage of the fishing vessels. Catches of prohibited species by foreign and JV groundfish fisheries are listed in Tables 3 and 4. All catches of herring and shrimp in the BSAI and GOA, and most of the halibut catches from the GOA in Tables 3 and 4 were from the directed, non-groundfish fisheries of the United States and Canada (combined in the category called All Others). These data were included because it was impossible to separate the directed catches of herring, shrimp, and halibut from the bycatch of these species in the small domestic directed groundfish fisheries (principally for Pacific cod).

Discussion of Trends -- During the 1970s, groundfish off Alaska were caught almost exclusively. by the distant-water fleets of Japan, Russia (formerly the Soviet Union), Republic of Korea (South Korea), Poland, and Republic of China. In the BSAI (Tables 1 and 3), Japan and Russia targeted on the same species of groundfish currently sought by domestic fisheries: walleye pollock (Theragra chalcogramma), Pacific cod (Gadus macrocephalus), sablefish (Anoplopoma fimbria), and various flatfish (Pleuronectiformes) and rockfish (Sebastes spp.) species. In these fisheries, Japan and Russia had "bycatches" of Pacific halibut and herring, the latter of which for the Russians were as high as 54,000 metric tons (t) in 1972. Catches of "other" species were also considerably higher by foreign fisheries in the 1970s than they currently are for domestic fisheries, due in part to inclusion of current groundfish targets such as Atka mackerel (Pleurogrammus monopterygius) in the "other" species category, but also presumably because of greater reliance on bottom trawls to catch semi-demersal species such as pollock. In the GOA (Tables 2 and 4), total fish removals were about 5-10 times less than in the BSAI. Japanese trawl vessels in the GOA chiefly targeted Pacific ocean perch (Sebastes alutus) through 1976, when they switched to pollock, cod, and flatfish; Japanese longliners targeted sablefish and Pacific cod in the GOA through the 1970s and 1980s. Russian vessels primarily targeted pollock and Atka mackerel using trawls. Interestingly, there were only small reported catches of Pacific halibut by Russian vessels, and no reported catches of herring by any foreign vessels fishing the GOA in the 1970s, which is clearly an inaccurate representation of their total catch.

Joint-ventures between foreign processing ships and U.S. domestic catcher vessels began operating in 1978 in the GOA, and in 1980 in the BSAI. Targeted groundfish species remained the same throughout the 1980s. Allocations of pollock, cod, Atka mackerel, flatfish and rockfish to domestic production elements (which included JV) in both the BSAI and GOA increased through the 1980s. Bycatch of prohibited species was increasingly controlled through time and area groundfish fishery closures, exclusion of certain gear types from critical areas, and ultimately, caps on the amounts of halibut, crab, salmon, and herring that could be incidentally caught by groundfish fisheries.

Fritz (in press) reviewed the bycatch rates of juvenile pollock by groundfish fisheries in the BSAI and GOA from 1964-1991. The current U.S. domestic fishery and the joint-venture fisheries of the 1980s in the BSAI generally retained pollock greater than 30 cm in length, but targeted larger fish, and discarded fish smaller-than 30 cm (Wespestad and Dawson 1991). Catch rates (catch in numbers of 2-3 year-olds divided by their population size) of 2-3 year-old BSAI pollock (approximately $20-35 \mathrm{~cm}$ in length) averaged only about 2% from 1980-90. Foreign fisheries in the mid- to late 1970s (1973-79), however, caught an average of 20% of the 2-3 year-old BSAI pollock each year. Targeting on small fish, particularly the strong 1972 year class, may have occurred during this period, but the amount of discards is unknown.

Catch. Bycatch, and Discard By the Domestic Groundfish Fisheries 1990-94

Data Sources and Table Summaries -- The data presented are NMFS' best estimates of catch from 1990-1994 for domestic fisheries. Data since 1991 is based on a blend model incorporating observer data and weekly processor reports. The blend model has developed over time. For the 1991-1994 data, the 1994 blend model is applied to all years. A blend model was not constructed in 1990. Instead, weekly production reports serve as the basis for the groundfish catch data. For all years since 1990, the estimated catch of prohibited species is based on observed bycatch rates applied to the total catch estimate.

The blended catch statistics contain the estimated amounts (in metric tons) of each allocated groundfish species and species group that was retained or discarded by each target fishery, processing mode (at-sea or shoreside processor, or mothership), and gear type, and within each area (three-digit statistical area) and week. Data on total and discarded catch, and discard rates (discarded/total catch) of each groundfish species and species group by year (1990-94), region (BSAI and GOA), target species fishery, and gear type from these sources are summarized in Tables 5-34, and in Figures 1-2. In these and the tables summarizing prohibited and "other species" bycatches (Tables 35-52), the following guidelines were used for reporting and aggregating data into target species/gear groups:
the target fishery definitions developed by the NMFS Alaska Regional Office (AKR) are used; to ensure this, the "blend" (1991-94) or the weekly processor report data (1990) were run through a target fishery algorithm (which uses the same criteria established by AKR, except for rock sole (Pleuronectes bilineatus) - other flatfish fisheries) at the NMFS Alaska Fisheries Science Center, Seattle. This ensured a data set with consistent target fishery assignments;
all catches of rockfish and thornyheads (Sebastolobus spp.) were summed and reported as one category (Rockfish);

- AKR assigns pollock target fishery types (pelagic or bottom trawl) to catch data based on the percentage of pollock in the catch rather than by reported gear type. If the total catch is composed of at least 95% pollock then a pelagic trawl pollock target is (assigned; if pollock is the major species caught but comprises less than 95% of the retained catch, then bottom pollock fishery is assigned;
- squid (molluscan order Decapoda) and other species are combined in the "other" category;
recently created flatfish target fisheries in the GOA (rex sole (Errex zachirus) and flathead sole (Hippglossoides elassodon)) were included with Deepwater Flatfish. Atka mackerel in the GOA was included with "other" species until 1993.

Catches of prohibited species by each target fishery in the BSAI and GOA by gear in 1990-94 are summarized in Tables 35-44. Halibut and herring are listed in these tables by weight (t) of catch, while salmon and crab are listed in numbers of animals caught. For halibut, the weight listed is that caught, not the estimated mortality.

The "other" species category listed in Tables 5-34 consists of squids; octopi (molluscan order \mathbf{O} ctopoda), smelts, sharks, skates, and sculpins, among others. These species have a collective allocation or catch quota in both the BSAI and the GOA. Currently there is no significant directed fishing on these species in the BSAI and GOA. Records of catches of "other" species exist in observer sample data as well as in weekly processor reports and fish tickets. To investigate the species composition of the "other" species category and how this is affected by gear and target fishery, catch rates of each of the species groups listed above (and more, including grenadiers, eelpouts (Zoarcidae), snipe eels (Macroramphosidae), greenlings (Hexagrammidae), lumpsuckers (Cyclopteridae), hagfish (Myxinidae), ratfish (Chimaeriformes), and poachers (Agonidae)) by each target fishery and gear were obtained from the observer database. These rates were then applied to the target species/gear catches in the "blend" file to obtain estimates of the catch weights of each "other" species group in the BSAI and GOA in 1990-93 (Tables 45-52). In theory, the total obtained using this method should be similar to the total listed in the "other" species category in Tables 5-34 for the same time/area/fishery/gear cell.

Groundfish and other allocated species: catch trends -- Total discard rates (sum of total discards/sum of total catch) by the domestic groundfish fisheries in the BSAI ranged between 12% and 16% in 1990-94. In the GOA, discard rates for the same period were slightly higher, ranging between 17% and 21% (this may, in part, be due to the classification as discards of some pollock from shoreside plants that was converted to fish meal). However, the total tonnage discarded has been much greater in the BSAI (ranging between 197,660 t and $314,585 \mathrm{t}$ in 1990-94) than in the GOA (ranging between 41,360 t and $60,760 \mathrm{t}$) due to the much larger size of the fishery. In the BSAI, the majority of the discards (by weight) has been pollock (between 37% and 60% of the total discards), with rock sole discards generally the second largest by weight ($6-14 \%$). Pollock and rock sole discards combined have accounted for not less than 50% of the total groundfish and "other" species discards each year from 1990 to 1994 in the BSAI. In the GOA, discards of arrowtooth flounder (Atheresthes stomias) comprised more than one-third of the total discards each year from 1990 to 1994 (34-50\%), with pollock discards generally second, ranging from 16% to 30%.

Pollock fisheries in the BSAI and GOA have had the lowest total discard rates (discards of all allocated groundfish and "other" species divided by total catches) of any North Pacific groundfish fishery from 1990 to 1994, ranging from only 3% to 9% in the BSAI and 4% to 10% in the GOA. In the BSAI, the rock sole fishery has had the highest rate of total discard, ranging from 60-70\% in 1990-94, while in the GOA, it has been the deepwater flatfish fishery that has had the highest total discard rates, ranging from 52% to 72% of their total annual catch.

Despite their low rates of total discard, BSAI pollock fisheries have discarded the most groundfish and "other" species of any BSAI groundfish fishery, averaging over 93,000 t per year in 1990-94. Trailing the BSAI pollock fishery in total discards were the BSAI yellowfm sole and Pacific cod fisheries, which have each averaged about 60,000 t per year. In the GOA, total discards by the deepwater flatfish (average of 13,000 t per year) and Pacific cod (average of $12,200 \mathrm{t}$ per year) fisheries have accounted for about half of the total annual discards by all GOA groundfish fisheries in 1990-94.

Target species discard rates have generally been higher for flatfish than roundfish fisheries in both the BSAI and GOA. In the BSAI, target species discard rates in 1990-94 by each of the two largest flatfish fisheries, yellowfin and rock sole, ranged from 21% to 28%) and 34% to 58%) respectively. In fact, the BSAI directed rock sole fishery had the highest rates of target species discard of any fishery in the BSAI or GOA. By contrast, target species discard rates in the same period-by each of the two largest directed BSAI roundfish fisheries, pollock and Pacific cod, ranged from 2% to 6%, and 2% to 9%) respectively. In the GOA, 1990-94 target species discard rates by deepwater and shallow flatfish fisheries ranged from 9% to 18%, and 6% to 26%) respectively, while the two largest GOA roundfish fisheries, pollock and Pacific
cod, discarded between 2% and 8%, and 2% and 4%) respectively of their target species catches. In the GOA, the rockfish fishery has had the highest rate of target species discard relative to its total catch, discarding between 11% and 30% in 1990-94. For this report, however, the rockfish fishery includes all Sebastes and Sebastolobus spp. targets, and as such, the reported discard rates for individual species or group targets may be misleading. The lowest rates of target species discard have been achieved by the sablefish fisheries in the BSAI and GOA, which have discarded less than 2% (by weight) of all their sablefish caught in both areas each year from 1990-94.

Prohibited Species: Catch Trends -- Total catch and discard amounts and rates listed in Tables 5-34 do not include the mandatory discards of Pacific halibut, Pacific herring, salmon, and all king and Tanner crabs by groundfish fisheries (Tables 3544). Groundfish fisheries are prohibited from retaining these species' to eliminate any incentive to target on them. In 1994, inclusion of the discards of prohibited species with the discards of groundfish and other species by all BSAI groundfish fisheries increases the estimates of total discards and total catch by $18,812 \mathrm{t}$ (to 313,551 and $2,013,081 \mathrm{t}$, respectively ${ }^{2}$), and the total discard rate by 1% (to 16%). Similarly, in the GOA, the estimates of total discards and total catch increase by 10,889 t (to 54,315 and $250,904 \mathrm{t}$, respectively) and the total discard rate by 4% (to $22 \%)^{3}$.

In groundfish fisheries, trawls capture not only the majority of the groundfish catch, but also most of the bycatch of herring (primarily pelagic trawl pollock), salmon (trawl fisheries for pollock and cod) and crabs (bottom trawl fisheries for flatfish, cod and pollock). Halibut are caught as bycatch principally in the trawl fisheries for pollock, cod and some flatfish, but in the hook and line fisheries for cod as well.

Other Species: Catch Trends -- In both the BSAI and GOA, almost, all of the "other" species caught are discarded (Tables 25-34). As listed in Tables 45-52, the "other" species category consists primarily of skates and sculpins in the BSAI (with lesser amounts of grenadiers,

[^0]squid, octopus, and smelts), while in the GOA, grenadiers have been the principal "other" species caught followed by skates and sculpins. The total "other" species catches listed in Tables 45-52 do not match those in Tables 5-34 because they were not computed in the same manner. The data in Tables 5-34 represent the blend estimates of total "other" species catches, which are not broken out by species or species groups. The observer data in Tables 45-52 were obtained by looking specifically at catch rates of individual species or species groups, and multiplying the observed rate per target species catch by the target species catch.

In the BSAI, annual blend estimates and expanded observer estimates of other species catches were similar, both varying between about 16,000-33,000 t for 1990-93. Squid was caught primarily by the pelagic pollock trawl fishery, octopuses by the bottom pollock and cod fisheries, smelts by the yellowfin sole trawl fishery, grenadiers by the hook and line fisheries for sablefish and Greenland turbot (Reinhardtius hippoglossoides), and skates and sculpins by almost every fishery, particularly those using trawls, in the BSAI This fairly close agreement between the two data sets may reflect the relatively high rate of observer coverage on the BSAI fishing fleet.

In the GOA, blend estimates were always less than the expanded observer estimates of "other" species catches: in 1992 and 1993 the blend estimate was considerably less than one-half the expanded observer estimate. Based on the data in Tables 49-52 and 10-14, almost all of the differences between the two totals is due to sablefish hook and line fishery bycatches of grenadiers. In 1990-93, the blend estimates of total "other" species bycatches by the GOA sablefish fishery (almost all hook and line) totaled $688 \mathrm{t}, 709 \mathrm{t}, 815 \mathrm{t}$, and $1,109 \mathrm{t}$, respectively. By contrast, the expanded observer estimates of grenadier bycatch alone by the GOA sablefish fishery for these years were $8,386 \mathrm{t}, 4,724 \mathrm{t}, 11,843 \mathrm{t}$, and $15,522 \mathrm{t}$, respectively. Apparently, there may be under-reporting of the catch of other species in the GOA by unobserved vessels. The GOA sablefish fishery has had one of the lowest rates of observer coverage (about 10% or less of the target species catch has been observed) in the North Pacific because of the large number of vessels that are either exempt from observer coverage ($<65 \mathrm{ft}$ in length) or are only required to have an observer on 30% of their fishing days ($65-125 \mathrm{ft}$ in length). Thus, the expansion factors to correct "other" species catches for that caught by the unobserved portion of the fleet were large (10 or larger) for the GOA sablefish fishery, which could have introduced an upward bias in the "other" species catch estimates. However, using these expanded estimates, grenadier bycatch by the sablefish hook and line fishery has accounted for 50% or more of the estimated "other" species bycatch in the GOA in 1990-93. For the remaining "other" species; squid has been caught principally by the rockfish and pollock trawl fisheries; octopus by the cod pot fishery; smelts by trawl fisheries for rockfish and pollock; and skates, sharks, and sculpins by a wide variety of primarily-trawl fisheries.

Table 1. Total catches (t) of groundfish and other species by foreign and joint-venture fisheries from 1972-90. and domestic vessels from 1984-89 from the Bering Sea and Aleutian Islands region. 1972-76 data by nation from Murai et al. (1981) and Forrester et al. (1983): "All Others" includes primarily landings of shrimp in the directed fisheries of the United States and Canada
1977-90 foreign and JV data is NMFS blend from various publications (see text). 1984-89 domestic data are from Kinoshita et al. (in press). Other species includes
octopus, squid, and other fish not listed in Table 3.

	Year	Country	Pollock	Cod	Sablefish	mackerel	Flacfish	Rockfish	Shrimp	Species	Total
	1972	Japan	1,652,518	39,934	15,770	a	151,626	15,802	5,805	31,659	1,913,114
		Russia	214,761	7,028	2,406	a	61,006	24,745	.	109.487	419.433
		S. Korea	9.180	-	-	a	-	-	-	-	9,180
,		Total	1,876,459	46,962	18,176	a	212,632	40,547	5,805	141,146	2,341,727
	1973	Japan	1,477,001	45,588	8,774	27	161,794	13,942	152	44,903	1,752,181
		Russia	289,633	12,980	1,254	-	21,178	3.491	-	32,113	360,649
		S. Korea	3,080	:	-	-	-	-	-	-	3,080
		Total	1,769,714	58,568	10.028	27	182,972	17.433	152	76,065	2.114.959
	1974	Јарап	1,256,201	50,422	7,194	91	118,145	30,580	102	65,340	1,528,075
		Russia	330,959	16,592	91	1,377	38,709	32,701	-	14,496	434,925
		S. Korea	28,600	.	-	-	-		-	5,963	34,563
		Total	1,615,760	67,014	7,285	1,468	156,854	63,281	102	85,799	1,997,563
$\stackrel{\rightharpoonup}{\square}$	1975	Japan	1;067,711	38,837	5.357	3	115,292	14,516	3,556	65,481	1,310,753
		Russia	228,829	18,486	117	13,326	40,415	24,612	-	12,492	338,277
		S. Korea	3,438	49	9	-	.	27	-	1,244	4,767
		All Others	-	-	-	, ${ }^{-}$	-	-	405	300	705
		Total	1,299,978	57,372	5,483	13,329	155,707	39,155	3,961	79,517	1,654,502
	1976	Japan	991,039	39,453	4,537	92	105,534	15,683	2,213	65,670	1,224,221
		Russia	179,212	18,068	90	20,737	30,480	19,075	-	11,975	279,637
		S. Korea	85,478	736	186	-	1,334	616	-	1,605	89,955
		Total	1,255,729	58,257	4,813	20,829	137,348	35,374	2,213	79,250	1,593,813
	1977	Foreign	978,400	35,900	4,600	-	136,700	10,800	-	103,500	1,269,900
		Domestic	-	15	- -	-	-	-	-	-	15
		Total	978.400	35,915	4,600	-	136,700	10,800	-	103,500	1,269,915
	1978	Foreign	979,400	47,400	2,000	24,200	235,800	7,500	-	83,400	1,379,700
		Domestic	-	35	-	-	- -	-	-	-	35
		Total	979,400	47.435	2,000	24,200	235.800	7,500	-	83.400	1,379,735

Table 1. (continued).

Table 1. (continued)

Table 2. Total catches (t) of groundfish and other species by foreign, joint-venture and domestic vessels from the Gulf of Alaska, 1972-1989. 1972-76 data by nation From Murai et al. (1981): "All Others" includes primarily landings of shrimp in the directed fisheries of the United States and Canada. 1977-89 Foreign and JV data are NMFS blend from various publications (see text) 1984-89 domestic data are From Kinoshita et al. (in press). Other species includes octopus, squid, and other fish not included in Table 4.

	Year	Country	Pollock	Pacific Cod	Sablefish	Atka mackerel	Elatfish	Rockfish	Shrimp	Other Species	Total
	1972	Japan	13,696	816	35.626	a	7,522	52,605	-	2,494	112,759
		Russia	20,385	2,696	535	a	1,363	24,011	-	13,290	62,280
		S. Korea	717	-	380	a	.	2,945	-	-	4,042
		All Others	-	1	741	a	69	2	38,036	, -	38,849
		Total	34,798	3,513	37,282	a	8,954	79,563	38,036	15,784	217,930
	1973	Japan	6,706	2,605	27,351	a	18,502	54,692	-	4,155	114,011
		Russia	34,138	3,300	109	10,998	1,061	5,646	-	4,096	59,348
		S. Kotea	858	-	42	-	-	3,432	-	-	4,332
		All Others	-	58	882	-	450	118	52,933	70	54,511
		Total	41,702	5,963	28,384	10,998	20,013	63,888	52,933	8,321	232,202
	1974	Japan	30,433	2,972	24,283	a	7,107	41,010	-	6,501	112,306
		Russia	31,000	2,136	38	17,531	2,334	17,194	-	7,649	77,882
$\stackrel{\leftrightarrow}{\star}$		S. Korea	-	-	3,000	-	-	-	-	2,237	5,237
		All Others	-	74	787	-	325	30	49,319	403	50,938
		Total	61,433	5,182	28,108	17,531	9,766	58,234	49,319	16,790	246,363
	1975	Japan	13,032	3,280	22,157	a	2,697	43,746	-	6,230	91,142
		Russia	39.949	2,551	33	27,776	2,766	15,071	-	7,269	95,415
		Poland	631	784	-	619	67	-	-	-	2,101
		S. Korea	5,900	-	2,188	a	-	2,950	-	2,950	13,988
		Taiwan	-	-	100	-	-	-	-	50	150
		All Others	-	130	1,104	-	2	98	44,893	50	46,277
		Total	59,512	6,745	25,582	28,395	5,532	61,865	44,893	16,549	249,073
	1976	Japan	11,796	3,308	21,998	a	2,283	45,005	-	5,548	89,938
		Russia	37,825	2,995	41	19,933	2,601	9.697	-	6,755	79,847
		S. Korea	29,720	244	3,700	-	1,052	1,615	-	1,083	37,414
		All Others	60	217	806	-	153	189	58,542	158	60,125
		Total	79,401	6,764	26,545	19,933	6,089	56,506	58,542	13,544	267,324
	1977	Foreign	117,834	1,988	15,957	19,455	16.038	23,578	-	4,642	199,492
		Domestic	-	280	-	-	-	-	-	-	280
		Total	117,834	2,268	15,957	19,455	16,038	23,578	-	4,642	199,772

Table 2. (continued)

	Year	Country	Pollock	Pacific Cod	Sablefish	Atka mackere!	Elatfish	Rockfish	Shrimp	Other Species	Total
	1986	Foreign	114	15,211	1	1	71	4	-	146	15,548
		- JV	62,591	1,357	45	4	961	67	-	262	65,287
		Domestic	21,300	8,000	21,700	-	1,500	7,900	-	-	60,400
		Total	84,005	24,568	21,746	5	2,532	7,971	-	408	141,235
	1987	Foreign	-	-	-	-	-	- -	-	-	-
		JV	22,823	1,978	180	1	7,208	154	-	182	32,526
		Domestic	39,900	29,500	26,300	-	2,700	12,700	-	-	111,100
		Total	62,723	31,478	26,480	1	9,908	12,854	-	182	143,626
	1988	Foreign	-	-	-	-	-	-	-	-	-
		JV	152	1,661	37	. 1	1,781	11	-	129	3.772
		Domestic	55,600	30,900	31,000	100	7,000	18,400	-	-	143,000
\leftharpoondown		Total	55,752	32,561	31,037	101	8,781	18,411	-	129	146,772
	1989	Foreign	-	-	-	-	-	-	-	-	-
\therefore		JV	-	-	-	-	-	-	-	-	-
		Domestic	66,600	41,800	29,800	200	5,200	23,400	-	-	167,000
		Total	66,600	41,800	29,800	200	5,200	23,400	-	-	167,000

a. Atka mackerel included with Other Species

Table 3. Catches (t) of halibut, herring, salmon, and crabs by foreign and joint-venture fisheries from 1972-90 from the Bering Sea and Aleutian Islands. 1972-76 data by nation from Murai et al. (1981); "All Others" includes primarily landings of halibut and herring in the directed fisheries of the United States and Canada. 1977-90 foreign and JV data is NMFS blend from various publications (see text).

Year	Country	Halibut	Herring	Salmon	King Crab	Tanner Crab
1972	Japan	4,199	6,458	-	-	-
	Russia	491	54,000	-	-	-
	S. Korea	-	' -	-	-	-
	All Others	347	88	-	, -	-
	Total	5,037	60,546	-	-	-
1973	Japan	3,761	2,395	-	-	-
	Russia	300	34,361	-	-	-
	S. Korea	-	285	-	-	-
	All Others	151	78	-	-	-
	Total	4,212	37,119	-	-	-
1974	Japan	1,849	7,185	-	-	-
	Russia	127	19,800	-	-	-
	S. Korea	-	200	-	-	-
	All Others	246	114	-	-	-
	Total	2,222	27,299	-	-	-
1975	Japan	1,210	1,839	-	-	- -
	- Russia	140	14,206	-	-	-
	S. Korea	-	.	-	-	-
	All Others	241	51	-	-	-
	Total	1,591	16,096	-	-	-
1976	Japan	670	15,928	-	-	-
	Russia	60	16,812	-	-	-
	S. Korea	-	. -	-	-	-
	All Others	288	8	-	-	-
	Total	1,018	32,748	-	-	-
1977	Foreign	-	19,300	-	-	-
1978	Foreign	-	8,400	-	-	-
1979	Foreign	-	7,500	-	-	-
1980	Foreign	4,311	783	381	781	2,058
	JV	286	-	7	241	56
	Total	4,597	783	388	1,022	2,114

Table 3. (continued).

Year	Country	Halibut	Herring	Salmon	King Crab	Tanner Crab
1981	Foreign	2,704	287	137	666	1,196
	JV	232	-	3	642	276
	Total	2,936	287	140	1,308	1,472
1982	Foreign	1,609	1,949	85	343	425
	JV	563	37	8	90	24
	Total	2,172	1,986	93	433	449
1983	Foreign	1,872	1,398	66	353	501
	JV	438	1,115	54	337	171
	Total	2,310	2,513	120	690	672
1984	Foreign	2,128	1,257	51	309	527
	JV	617	-	160	283	119
	Total	2,745	1,257	211	592	646
1985	Foreign	1,789	1,480	33	191	263
	JV	1,026	3,059	30	678	134
	Total	2,815	4,539	63	869	397
1986	Foreign	1,192	254	5	19	280
	JV	1,711	3,764	66	332	370
	Total	2,903	4,018	71	351	650
1987	Foreign	1,077	19	13	9	101
	JV	1,485	468	41	169	537
	Total	2,562	487	54	178	638
1988	JV	2,579	351	35	119	464
1989	JV	874	2,527	45	315	672
1990	JV	799	127	1	254	945

Table 4. Catches (t) of halibut, herring, salmon, and crabs by foreign and joint-venture fisheries from 1972-88 from the Gulf of Alaska. 1972-76 data by nation from Murai et al. (1981); "All Others" includes primarily landings of halibut and herring in the directed fisheries of the United States and Canada. 1977-88 foreign and JV data is NMFS blend from various publications (see text).

Year	Country	Halibut	Herring	Salmon	King Crab	Tanner Crab
1972	Japan	-	-	-	-	-
	Russia	302	-	-	-	-
	S. Korea	-	-	-	-	-
	All Others	14,316	8,217	-	-	-
	Total	14,618	8,217	-	-	-
1973	Japan	-	-	-	-	-
	Russia	174	-	-	-	-
	S. Korea	-	-	-	-	-
	All Others	11,095	7,998	\checkmark	-	-
	Total	11,269	7,998	-	-	-
1974	Japan	-	-	-	-	-
	Russia	60	-	-	-	-
	S. Korea	-	-	-	-	-
	All Others	7,239	17,663	-	-	-
	Total	7,299	17,663	-	-	-
1975	Japan	-	-	-	-	-
	Russia	50	-	-	-	-
	Poland	31	-	-	-	-
	S. Korea	-	-	-	-	-
	Taiwan	-	-	-	-	-
	All Others	8,985	16,081	-	-	-
	Total	9,066	16,081	-	-	-
1976	- Japan	-	-	-	-	-
	Russia	26	-	-	-	-
	S. Korea	-	-	-	-	-
	All Others	8,862	-	-	-	-
	Total	8,888	-	-	-	- '
1977	Total	a	a	a	a	a
1978	Foreign	1,289	-	131	135	14
	JV	b	b	b	b	b
	Total	1,289	-	131	135	14

Table 4. (continued).

Year	Country	Halibut	Herring	Salmon	King Crab	Tanner Crab
1979	Foreign	2,576	' -	69	40	11
	JV	22	-	2	1	0
	Total	2,598	-	71	41	12
1980	Foreign	3,205	-	107	9	17
	JV	49	-	1	13	14
	Total	3,254	-	108	22	31
1981	Foreign	2,499	-	96	8	70
	JV	5	-	-	-	-
	Total	2,504	-	96	8	70
1982	Foreign	2,690	-	19	6	35
	JV	4	-	3	0	0
	Total	2,694	-	22	6	36
1983	Foreign	3,235	-	32	3	22
	JV	357	-	12	15	55
	Total	3,592	-	44	18	77
1984	Foreign	1,506	-	36	5	6
	JV	590	-	169	20	27
	Total	2,096	-	205	25	33
1985	Foreign	241	-	2	0	0
	JV	300	-	39	8	17
	Total	541	-	41	8	17
1986	Foreign	384	-	-	-	1
	JV	89	-	54	0	5
	Total	473	-	54	0	6
1987	JV	656	-	4	0	2
1988	JV	245	-	1	1	4

Foreign data not available for 1977.
No estimates were made of PSC bycatch in the 1978 joint-venture fishery.

Table 6. Total catch of allocated groundfish species and species groups by target fishery and gear in the Bering Sea/Aleutian Islands, 1991.
Target species catches by fishery are listed in bold. The Other category is described in detail in Table 46.

Allocated Species or Species Groups													
Targel fishery	Gear	Atka mackerel	rrowtooth flounder	Yellowfin sole	Greenland turbot	Rock sole	Other Ilatish	Pacific cod	Pollock	Sablefish	Rockfish	Other	Grand Total
Atka mackerel	Trawl	24,975	172	-	46	122	56	2,411	926	55	814	884	30,460
Arrowtooth flounde'	Hook\&line	-	5	-	1	-	-	-	-	3	0	0	8
	Trawl	2	1,463	0	403	2	126	25	171	30	99	113	2,434
	total	2	1,468	0	404	2	126	25	171	33	99	113	2,443
Yeilowfin sole	Trawl	1	175	104,596	0	9,665	13,410	3,995	8,063	1	29	3.803	143.736
Rock sole	Trawl	1	712	7.231	1	36,283	6.157	6.365	20.040	8	88	2,830	79.715
Other flatfish	Trawl	70	2,597	4,276	5,069	1,243	4,179	1.071	3,333	258	125	1,104	23,325
Pacific cod	Hook\&line	3	2,156	3	575	22	328	79,387	2,576	358	288	7,225	92,922
	Pot	2	1	39	0	. 0	1	6,673	3	0	1	224	6,943
	Trawl	898	3,466	592	190	6,560	4,510	90,141	41,060	17	2,648	4,799	154,881
	TOTAL	902	5,623	634	765	6,583	4,838	176,201	43,639	376	2,937	12,248	254,746
Pollock	Bot. Irawl	562	7,792	856	208	2,581	5,744	21,908	327,528	28	645	4,165	372,018
	Pel trawl	8	598	52	125	238	1,425.	4,725	1,224,008	1	289	1,492	1,232,963
	TOTAL	570	8,390	908	333	2,819	7,169	26,634	1,551,537	30	934	5,657	1,604,981
Sablefish	Hook\&line	0	196	-	1,300	-	26	283	8	2,528	280	125	4,745
	Pot	-	0	-	0	-	-	-	-	0	-	-	0
	Trawl	-	155	-	189	-	19	12	28	97	29	23	551
	TOTAL	0	351	-	1,489	-	45	295	35	2,625	309	149	5,297
Rockfish	Hook\&line	-	1	-	3	-	3	2	-	9	13	0	30
	Trawl	215	1,497	6	127	106	361	1,028	809	47	5,270	603	10,069
	TOTAL	215	1,498	6	129	106	364	1,030	809	56	5,283	603	10,099
Other	AlL	-	46	-	0	0	5	27	2	1	0	55	138
Grand Total		26,737	21,031	117,652	8,236	56,824	36,348	218,053	1,628,554	3,442	10,617	27,445	2,154,939
Percent		1.2\%	1.0\%	5.5\%	0.4\%	2.6\%	1.7\%	10.1\%	75.6\%	0.2\%	0.5\%	1.3\%	100.0\%

Table 7. Total catch of allocated groundfish species and species groups by target fishery and, gear in the Bering Sea/Aleutian Islands, 1992.
Target species catches by fishery are listed in bold. The Other category is described in detail in Table 47.

	Allocated Species or Species Groups													
	Target fishery	Gear	Atka mackere!	Arrowtooth flounder	Yellowfin sole	Greenland turbot	Rock sole	Other flatfish	Pacific cod	Pollock	Sablefish	Rockfish	Other	Grand Total
	Alka mackerel	Trawl	44,447	205	0	34.	44	39	3,411	566	5	3,496	193	52,440
	Arrowtooth flounder	Trawl	11	108	0	10	13	44	24	127	1	11	24	374
	Yellowfin sole	Trawl	1	438	138,102	1	14,479	17,149	8,542	12,866	0	0	7.954	199,531
	Greenland turbot	Hook\&line	-	4	-	75	-	0	12	0	28	4	10	134
	Rock sole	Trawl	8	642	4,927	3	25,266	4,694	4,858	10,307	-	22	1.824	52,550
	Other flatish	Trawl	0	126	2,598	1	1,577	1,297	899	987	-	0	386	7,871
N	Pacific cod	Hook\&line	57	1,655	91	576	28	275	100,896	3,190	179	838	11,165	118,950
		Jig	0	-	-	-	-	-	1	0	-	0 .	-	1
		Other	-	-	-	-	-	1	116	-	0	0	-	117
		Pot	12	3	24	9	2	1	13,680	7	13	3	670	14,423
	\because	Trawl	3.071	2,865	276	81	3,501	2,485	47,913	16,617	10	1,176	3,002	80,998
		TOTAL	3,140	4,524	391	667	3,532	2,762	162,605	19,814	201	2,017	14,837	214,489
Pollock		Bot. trawl	19	1,265	653	57	3,715	2,970	9,673.	96,374	0	424.	1,758	116,908
		Pel. trawl	242	2,804	186	251	3,268	5,638	13,565	1,295,993	8	205	4,165	1,326,325
		TOTAL	261	4,069	839	308	6,983	8,608	23,238	1,392,367	8	629	5,924	1,443,234
Sablefish		Hook\&line	-	268	-	1,445	-	6	139	1	1,807	304	146	4:116
		Other	-	-	-	-	-	-	-	-	1	-	-	1
		Pot	-	0	-	-		-	0	0	0	0	0	1
		Trawl	-	1	-	2	-	-	-	-	26	2	1	31
		TOTAL	-	269	- -	1.447	-	6	139	1	1,834	305	147	4,149
Rockfish		Hook\&line	-	1	-	2	-	0	-	-	0	1	0	4
		Other	-	-	\cdots	-	-	-	--	-	-	1	-	1
		Trawl	2,164	1,556	-0	220	61	243	1,241	1,338	25	11,944	552	19,345
		TOTAL	2,164	1,556	0	222	61	243	1.241	1,338	26	11,946	552	19,350
	Other	ALL	0	15	74	0	1	21	341	32	0	- 36	688	1,207
	Grand Total		50,033	11,956	146,931	2,769	51,955	34,862	205,310	1,438,406	2,104	18,466	32,538	1,995,330
	Percent		2.5\%	0.6\%	7.4\%	0.1\%	2.6\%	1.7\%	10.3\%	. 72.1%	0.1\%	0.9\%	1.6\%	100.0\%

Table 8. Total catch of allocated groundfish species and species groups by target fishery and gear in the Bering Sea/Aleutian Islands, 1993. Target species catches by fishery are listed in bold. The Other category is described in detail in Table 48

Table 9. Total catch of allocated groundfish species and species groups by target fishery and gear in the Bering Sea/Aleutian Islands. 1994 Target species catches by fishery are listed in bold.

Allocated Species or Species Groups													
Target Fishery	Gear	Atka mackerel	Arrowtooth flounder	Yellowfin sole	Greenland turbol	Rock sole	Other flounder	Pacific cod	Pollock	Sablefish	Rockfish	Olher	Grand Total
Atka mackerel	Trawl	67,821	148	0	49	63	21	7,375	320	1	6,169	434	82.400
Yellowfin sole	Trawl	-	1,719	135,775	6	8,682	14,426	18,086	41,287	-	0	4,294	224,276
Greenland turbot.	Hook\&line	0	88	-	1,281	0	2	65	1	153	44	73	1,708
	Trawl	1	1.297	0	5,456	1	67	45	20	346	90	- 115	7,437
	TOTAL	1	1,385	0	6,737	1	69	110	21	499	134	188	9.145
Rock sole	Trawl	0	649	5,370	12	40,335	3,586	5,643	15,377	2	1	2,728	73,703
Other flounder	Trawl	4	3,969	634	246	708	5,427	1.675	2,447	31	279	2,393	17.812
Pacific cod	Hook\&line	46	1,465	- 152	314	25	216	87,051	2,822	113	194	10,555	102,953
	Jig	69	0	-	-	-	13	730	14	-	9	0	836
	Pot	6	1	14	-.	0	1	8,247	4	-	1	196	8.469
	Trawl	240	1,919	1,244	60	8,104	3,043	53,096	22,015	3	337	2,401	92,464
	TOTAL	362	3,385	1,410	374	8,129	3,273.	149,124	24,854	117	540	13,153	204,721
Pollock	Bot. trawl	3	891	913	8	2,533	1.237	5,003	- 66,781	0	110	577	78,056
	Pel. trawl	62	1,073	166	53	419	1,654	9,068	1,270,431	2	108	859	1,283,896
	TOTAL	64	1,964	1,079	61	2,952	2,892	14,071	1,337,212	2	218	1,437	1,361,952
Sablefish	Hook\&line	-	236	0	1,315	1	1.	22	0	1,633	258	128	3,594
	Jig	-	-	-	0	-	-	-	-	3	0	-	3
	Pot	-	13	- -	2	-	0	-	-	24	8	3	50
	Trawl	0	159	-	193	-	15	4	7	75	22	15	491
	TOTAL	0	409	0	1,510	1	17	25	7	1,735	289	146	4.138
Rockfish	Hook\&line	-	0	-	6	-	0	0	-	2	4	1	14
	Trawl	1,339	625	96	349	18	43	470	449	76	11,789	151	15,404
-	TOTAL	1,339	625	96	355	18 -	43	470	449	78	11,793	152	15,418
Other	ALL	-	14	212	5	7	25	85	120	-	2	235	706
Grand Total		69,590	14,267	144,577	9,354	60.896	29,778	196,665	1,422,094	2,463	19,425	25,159	1,994,269
Percent		3.5\%	0.7\%	7.2\%	0.5\%	3.1\%	1.5\%	9.9\%	71.3\%	0.1\%	1.0\%	1.3\%	100.0\%

Table 10. Total catch of allocated groundfish species and species groups by target fishery and gear in the Gulf of Alaska, 1990.
Target species catches by fishery are listed in bold. 1990 data are based on weekly processor reports, not NMFS blend used in 1991-94, The Other category is described in detail in Table 49.

Table 11. Total catch of allocated groundfish species and species groups by target fishery and gear in the Gulf of Alaska, 1991. Target species catches by fishery are listed in bold. The Other category is described in detail in Table 50.

Allocated Species or Species Groups											
Target fishery	Gear	Atka mackerel	Arrowtooth flounder	Deepwater flatfish	Shallow flaffish	Pacific cod	Pollock	Sablerish	Rockfish	Other	Grand Total
Arrowtooth flounder	Trawl	-	1,595	353	5	104	382	85	367	42	2.933
Deepwater flatfish	Trawl	-	10,679	7,054	1,068	971	1,666	812	1,064	592	23,908
Shallow flatish	Trawl	-	327	269	516	186	194	50	74	56	1,672
Pacific cod	Hook\&line	0	13	7	2	7,324	32	24	79	116	7,598
.	Jig	-	0	-	0	75	1	-	8	-	85
	Other	-	0	-	-	10	-	-	-	0	10
	Pot	0	1	-	3	10,487	95	.	3	133	10,722
	Trawl	110	2,211	1,688	4,536	54,832	9,202	111	607	-1,787	75,083
	TOTAL	110	2,226	1,695	4,540	72,729	9,330	136	697	2,036	93,498
Pollock	Bot. trawl	0	1,315	963	552	993	13,966	212	244	142	18,387
	Pel. trawl	0	153	11	35	205	80,497	6	95	45	81,048
	TOTAL	0	1,467	974	587	1,199	94,463	219	339	187	99,435
Sablefish	Hook\&line	0	- 1,093	115	2	778	11	20,399	1,339	706	24,443
	Trawl	-	73	68	-	9	9	64	29	3	255
	TOTAL	0	1,166	182	2	787	20	20,463	1,368	709	24,698
Rockfish	Hook\&line	0	5	28	1	48	2	24	525	9	642
	Jig	-	-	-	-	28	0	6	395	0	429
	Trawi	21	3,985	769	181	659	1,389	1.318	15,998	281	24,600
	TOTAL	21	3,990	798	181	735	1,390	1,348	16,918	290	25,671
Other	ALL	1,263	120	145	35	266	61	21	372	1,809	4,093
Grand Total		1,395	21,570	11,469	6,935	76,977	107.506	23,134	21,200	5,721	275,907
Percent		0.5\%	7.8\%	4.2\%	2.5\%	27.9\%	39.0\%	8.4\%	7.7\%	2.1\%	100.0\%

Table 12. Total catch of allocated groundfish species and species groups by target fishery and gear in the Gulf of Alaska. 1992
Target species catches by fishery are listed in bold. The Other category is described in detail in Table 51

Allocated Species or Species Groups											
Target fishery	Gear	Alka mackerel	Arrowtooth flounder	Deepwater flatfish	Shaliow !latfish	Pacífic cod	Pollock	Sablefish	Rockfish	Other	Grand Total
Arrowtooth flounder	Hook\&lin	-	5	0	0	7	4	8	1	10	35
	Pot	-	0	- -		0	0	-	0	0	0
	Trawl	-	113	17	0	39	56	52	16	3	297
	total	?	118	18	1	46	60	61	16	13	332
Deepwater flatfish	Jig	-	-	1	-	-	-	-	0	-	1
	Trawl	2	9,378	7,197	485.	1,113	1,404	619	1,000	672	21,870
	total	2	9,378	7,198	485	1,113	1,404	619	1,000	672	21,871
Shallow flatish	Hook\&lin	-	-	-	3	1	-	0	-	-	4
	Trawl	-	1,660	945	3,903	1,116	711	125	168	574	9,201
	tọtal	-	1,660	945	3,906	1.117	711	125	168	574	9,205
Pacific cod	Hork\&lin	1	209	18	11	14,892	60	138	119	618	16,065
	Jig	-	-	-	-	154	0	-	3	0	157
	Other	\because	-	-	0	171	2	-	-	0	173
	Pot	0	1	0	1	10,009	2	0	2.	174	10.190
	Trawl	3	2,303	881	3,874	49,458	7,921	74	401	1,281	66,196
	total	3	2,513	900	3,886	74,683	7,985	211	525	2,073	92,780
Potlock	Bot. trawl	-	675	436	309	789	20,846	67	138	153	23,413
	Pel. Irawl	-	301	37	77	252	62,116	11	16	352	63,163
	total	-	976	473	386	1,041	82,962	78	154	505	86,576
Sablefish	Hook\&lin	0	1,266	3.240	2	510	13	20,477	1,707	815	28,029
	Trawl	-	15	2	0	2	13	9	1	0	42
	Total	0	1,282	3.243	2	512	25	20,485	1,707	815	28,071
Rockfish	Hook\&lin	.	3	0	0	56	0	44	739	4	845
	Jig	-	-	-	-	2	-	-	336	-	338
	Other	-	-	-	-	-	-	-	2	-	2
	Pot	-	-	-	-	0	-	-	1	-	1
	Trawl	115	4,176	485	64	580	545	1.717	18,780	393	26,855
	TOTAL	115	4,178	485	64	638	545	1,760	19,858	396	28,041
Other	ALL	8,463	920	389	30	950	212	36	1.499	5,034	17,532
Grand Total		8,583	21,025	13,650	8,761	80,100	93,905	23,376	24,927	10,081	284,408
Percent		3.0\%	7.4\%	4.8\%	3.1\%	28.2\%	33.0\%	8.2\%	8.8\%	3.5\%	100.0\%

Table 13. Total catch of allocated groundfish species and species groups by target fishery and gear in the Gulf of Alaska, 1993.
Target species catches by fishery are listed in bold. The Other category is described in detail in Table 52.

Table 14. Total catch of allocated groundfish species and species groups by target fishery and gear in the Gulf of Alaska, I994
Target species catches by fishery are listed in bold

Table 15. Discarded catch of allocated groundfish species and species groups by target fishery and gear in the Bering Sea/Aleutian Islands, 1990 .
Target species discards by fishery are listed in bold. 1990 data are based on weekly processor reports, not NMFS blend used in 1991-94.

						Allocated Sp	cies or Spe	Groups						
	Targel fishery	Gear	mackerel	Arrowtooth flounder	Yellowfin sole	Greenland turbot	Rock sole	Other flatfish	Pacific cod	Pollock	Sablefish	Rockfish	Other	Grand Total
	Alka mackerel	Trawl	2,247	134	-	18	47	88	456	2,248	0	774	2,546	8,558
	Arrowtooth flounder	Trawl	-	17	-	235	-	193	11	178	-	1	39	673
	Yellowfin sole	Trawl	-	97	2,824	-	517	1.712	112	1.870	-	37	947	8.114
	Greenland turbot.	Hook\&line	-	1	-	-	-	0	-	0	8	-	5	14.
		Trawl	4	1,506	-	38	1	473	39	514	3	48	1.944	4,572
		TOTAL	4	1,507	-	38	1	473	39	514	12	48	1,949	4,586
	Rock sole	Trawl	-	335	1,653	1	4,027	2,986	456	5,834	-	5	2,433	17,731
	Other flatish	Trawl	-	118	433	14	75	360	30	344	-	3	297	1,675
$\stackrel{\omega}{\omega}$	Pacific cod	Hook\&line	0	385	3	62	2	64	45	401	6	- 1	1,819	2,786
		Pot	-	0 .	10	- 3	-	8	4	0	-	\therefore	9	35
		Trawl	256	2,051	847	7	4,785	4,733	3,080	21,795	-	668	4,637	42,859
		TOTAL	256	2,436	860	72	4,787	4,805	3,129	22,196	6	669	6,465	45,680
	Pollock	Bot. trawl	62	474	71	16	618	- 929	549	4,201	6	46	957	7,929
		Pel, trawl	82	1,589	67	117	959	2,302	6,672	77,206	0	190	2,447	91,631
		Total	144	2,063	138	133	$\checkmark 1,577$	3,231	7,221	81,406	7	236	3,404	99,560
	Sablefish	Hook\&line	-	37	-	75	0	0	-	0	2	1	77	192
		Trawl	60	66	-	36	-	103	-	130	-		57	451
		TOTAL	60	103	-	110	0	103	-	130	2	1	134	644
	Rockfish	Hook\&line	-	0	-	8	-	1	-	1	-	-	0	11
		Trawl	303	1,332	-	104	51	345	245	3,984	3	1,980	1,776	10,123
		TOTAL	303	1,333	-	112	51	346	245	3,985	3	1,980	1,776	10,134
	Other	ALL	3	12	-	2	13	13	51	33	5	1	175	306
	Grand Total		3,017	8,155	5,909	736	11,096	14,310	11,749	118,738	33	3,754	20,164	197,660
	Percent		1.5\%	4.1\%	3.0\%	0.4\%	5.6\%	7.2\%	5.9\%	60.1\%	0.0\%	1.9\%	10.2\%	100.0\%

Table 16. Discarded catch of allocated groundfish species and species groups by target fishery and gear in the Bering Sea/Aleutian Islands, 1991 Target species discards by fishery are listed in bold.

Table 17. Discarded catch of allocated groundfish species and species groups by target fishery and gear in the Bering Sea/Aleutian Islands, 1992
Target species discards by fishery are listed in bold

Table 18. Discarded catch of allocated groundfish species and species groups by target fishery and gear in the Bering Sea/Aleutian Islands, 1993 Target species discards by fishery are listed in bold.

Allocated Species or Species Groups													
Targed	Gear	Alka mackerel	Arrowtooth flounder	Yellowfin sole	Greenland surbot	Rock sole	Other flatiosh	Pacific cod	Pollock	Sablefish	Rockfish	Other	Grand Total
Atka mackerel	Trawl	11,655	161	-	116	91	4	2,010	104	0	4,336	312	18,788
Arrowtooth flounder	Hookdeline	-	4	-	2	-	0	4	-	0	-	4	14
	Trawl	-	2	-	-	0	1	-	3	-	1	0	7
	TOTAL	-	6	-	2	0	1	4	3	0	1	4	21
Yellowfin sole	Trawl	0	980	21,115	5	4,493	6,979	5,250	13,902	0	6	3,790	56,521
Greenland turbot	Hook\&line	-	467	: -	330	0	100	27	1	10	50	492	1,476
	Trawl	-	7	-	3	0	1	-	1	-	0	0	13
	TOTAL	-	474	-	332	0	102	27	2	10	50	492	1,489
Rock sole	Trawl	8	1,143	3,799	26	23,284	4,031	5,633	17,331	3	18	3,030	58,307
Other flatfish	Trawl	0	1,167	2,303	152	1,055	1,523	756	2,074	6	93	959	10,088
Pacific cod	Hook\&line	17	675	5	67	18	200	4,388	1,905	12	207	7,173	14,666
	Jig	-	-	-	-	-	-	-	-	-	-	-	-
	Pot	3	0	7	-	0	-	25	2	-	0	44	82
	Trawl	2,808	1,662	814	41	5,122	2,516	6,820	26,872	0	773	2,733	50,160
	TOTAL	2,828	2,337	826	108	5,140	2,715	11,233	28,778	12	980	9,950	64,908
Pollock	Bot. trawl	5	507	409	12	5,403	1,085	4,691	6,996	0	101	1,248	20,459
	Pel. trawl	34	497	556	6 G	2,068	2,508	7.052	41,359	0	227	2,252	56,619
	TOTAL	40	1,004	966	78	7,472	3,593	11,743 ${ }^{\text {- }}$	48,354	0	327	3,501	77,078
Sablefish	Hook\&line	0	178	-	860	0	22	15	0	23	112	182	1,391
	Trawl .	- .	13	-	20	-	0	-	15	-	2	5	55
	TOTAL	0	191	-	880	0	22	15	15	23	114	186	1,446
Rockfish	Hook\&line	-	13	-	8	-	-	14	1	2	21	6	64
	Trawl	1,209	1,124	0	78	59	139	262	1,476	5	2,246	595	7,193
'	TOTAL	1,209	1,136	0	87	59	139	275	1,476	7	2,267	601	7,257
Other	ALL	18	37	3	0	75	50	121	86	-	10	28	428
Grand Total		15,758	8.635	29,011	1,786	41,669	19,160	37,068	112,127	60	8,202	22,854	296,331
Percent		5.3\%	2.9\%	9.8\%	0.6\%	14.1\%	6.5\%	12.5%	37.8\%	0.0\%	2.8\%	7.7\%	100.0\%

Table 19. Discarded catch of allocated groundfish species and species groups by target fishery and gear in the Bering Sea/Aleutian Islands. 1994 Target species discards by fishery are listed in bold.

Table 20. Discarded catch of allocated groundfish species and species groups by target fishery and gear in the Gulf of Alaska, 1990. Target species discards by fishery are listed in bold. 1990 data are based on weekly processor reports, not NMFS blend used in 1991-94.

		Allocated Species or Species Groups								
Targes fishery	Gear	Arrowtooth flounder	Deepwater flatfish	Shallow flatfish	Pacific cod	Pollock	Sablefish	Rockfish	Other	Grand Total
Arrowtooth flounder	Trawl	161	1	13	7	120	32	151	69	553
Deepwater flatish	Hook\&line	-	-	-	-	-	-	-	-	-
	Pot	-	-	-	-	-	-	-	-	-
	Trawl	3,423	314	202	31	300	17	566	230	5,082
	TOTAL	3,423	314	202	31	300	17	566	230	5,082
Shallow flatish	Pot	3	22	20	0	4	-	-	9	58
	Trawl	149	8	121	3	164	0	21	65	531
	TOTAL	152	30.	141	3	168	0	21	74	589
Pacific cod	Hook\&line	6	3	1	235	6	1	0	222	473
	Pot	27	-	-	2	0	-	-	2	31
	Trawl	4,701	419	2,197	831	2,384	20	183	871	11,606
	TOTAL	4,733	422	2,197	1,068	2,390	21	183	1,094	12,109
Pollock	Bot. trawl	856	55	93	4	348	35	53	95	1,540
	Pel. Irawl	1,515	29	135	88	1,342	3	43	195	3,350
	TOTAL	2,371	84	228	92	1,690	38	97	290	4,890
Sablefish	Hook\&line	89	94	5	27	3	47	81	592	938
	Pot	-	-	-	-	-	-	-	-	-
	Trawl	99	29	5	-	49	6	108	84	380
	TOTAL	187	124	10	27	51	53	189	676	1,318
Rockfish	Hook\&line	1	-	-	7	-	6	6	5	25
	Pot	-	-	-	-	-	-	-	-	-
	Trawl	5,982	1,107	794	96	1,935	514	2,154	2,574	15,157
	TOTAL	5,983	1,107	794	103	1,935	520	2,160	2,580	15,182
Other	ALL	108	46	18	427	147	0	724	164	1,634
Grand Total		17,119	2,127	3,603	1,758	6,801	682	4,090	5,178	41,357
Percent		41.4\%	5.1\%	8.7\%	4.3\%	16.4\%	1.6\%	9.9\%	12.5\%	100.0\%

Table 21. Discarded catch of allocated groundfish species and species groups by target fishery and gear in the Gulf of Alaska, 1991.
Target species discards by fishery are listed in bold.

Table 22. Discarded catch of allocated groundfish species and species groups by target fishery and gear in the Gulf of Alaska, 1992.
Target species discards by fishery are listed in bold.

Table 23. Discarded catch of allocated groundfish species and species groups by target fishery and gear in the Gulf of Alaska, 1993 Target species discards by fishery are listed in bold.

Allocated Species or Species Groups											
Target	Gear	Atka mackerel	Arrowtooth flounder	Deepwater flatish	Shallow flatfish	Pacific cod	Pollock	Sablefisb	Rackfish	Other	nd Total
Arrowtonth flounder	HookRline	-	1	0	-	6	0	13	5	1	27
	Trawl	-	534	61	31	23	38	23	104	75	888
	TOTAL	-	535	61	31	29	38	36	109	76	915
Deepwater flatish	Hook\&line	-	-	-	-	-	-	-	-	-	-
	Trawl	-	8,498	950	90	544	312	252	504	684	11,832
	TOTAL	-	8,498	950	90	544	312	252	504	684	11,832
Shallow flatish	Trawl	7	2,554	376	1,621	1,025	498	66	212	816	7,176
Pacific cod	Ilook\&line	0	147	0	1	205	25	4	4	656	1,043
	Jig	-	-	-	-	-	-	-	-	-	-
	Other	-	-	-	-	-	-	-	-	-	- -
	Pot	0	3	0	5	81	14	-	0	124	227
	Trawl	0	1,841	169	743	1,400	1,058	20	363	420	6,014
	TOTAL	0	1,991	169	749	1,686	1,097	24	367	1,200	7,285
Pollock	Bot. trawl	- -	575	189	832	1,226	1,741	9	18	549	5,137
	Pel. trawl	62	258	16	52	315	4,350	1	12	287	5,354
	TOTAL	62	833	205	884	1,541	6,091	10	30	836	10,491
Sablefish	Hook\&line	-	1,707	1,087	3.	484	2	361	657	1,087	5,389
	Trawl	-	71	14	-	1	6	6	5	4	107
	TOTAL	-	1,778	1,102	3	485	8	367	662	1,092	5,496
Rockfish	Hook\&line	-	2	0	-	5	0	13	8	12	40
	Jig	-	-	-	-	-	-	-	-	-	-
	Trawl	77	900	188	12	217	164	41	4,426	118	6,143
	TOTAL	77	901	188	12	223	164	54	4,434	130	6,183
Other	ALL	261	580	65	47	352	56	2	1,022	185	2,571
Grand Total		408	17,671	3,116	3,436	5,885	8,264	810	7,340	5,019	51,949
		0.8\%	34.0\%	6.0\%	6.6\%	11.3\%	15.9\%	1.6\%	14.1\%	9.7\%	100.0\%

Table 24. Discarded catch of allocated groundfish species and species groups by target fishery and gear in the Gulf of Alaska, 1994 Target species discards by fishery are listed in bold

Table 25. Discard rates (discarded/total catch) of allocated groundfish species and species groups by target fishery and gear in the Bering Sea/Aleutian Islands, 1990.
Target species discard rates by fishery are listed in bold. 1990 data are based on weekly processor reports, not NMFS blend used in 1991-94.

						Allocated Sp	ies or Spe	Groups						
	Target fishery	Gear	Atka mackerel	Arrowtooth flounder	Yellowfin sole	Greenland turbot	Rock sole	Other flarfish	Pacific cod	Pollock	Sablefish	Rockfish	Other	Grand Tetal
	Atka mackerel	Trawl	10.6\%	53.0\%	0.0\%	6.7\%	16.2\%	85.4\%	. 12.6%	98.3\%	0.3\%	53.4\%	100.0\%	26.7\%
	Arrowtooth floun	Trawl	-	2.1\%	-	98.6\%	0.0\%	97.4\%	23.8\%	98.8\%	0.0\%	1.1\%	92.5\%	41.0\%
	Yellowfin sole	Trawl	-	97.7\%	24.6\%	-	45.5\%	86.7\%	20.6\%	100.0\%	0.0\%	90.6\%	98.5\%	44.8\%
	Greenland turbot	Hook\&line	-	5.5\%	-	0.0\%	-	100.0\%	0.0\%	100.0\%	18.0\%	0.0\%	100.0\%	3.3\%
		Trawl	14.3\%	80.4\%	-	0.6\%	38.8\%	57.5\%	34.7\%	93.7\%	0.6\%	12.1\%	99.8\%	35.1\%
		TOTAL	14.3\%	79.9%	-	0.5\%	38.8\%	57.5\%	26.2\%	93.7\%	1.7\%	12.1\%	99.8\%	34.1 \%
	Rock sole	Trawl	-	96.6\%	74.7\%	97.9\%	33.8\%	93.3\%	16.1\%	92.6\%	-	100.0\%	96.4\%	60.4\%
	Other flatfish	Trawl	-	74.6\%	33.0\%	99.6\%	14.6\%	51.5\%	21.6\%	98.4\%	0.0\%	19.3\%	90.1\%	47.3\%
+	Pacific cod	Hook\&line	100.0\%	90.3\%	100.0\%	33.1\%	28.6\%	78.7\%	0.1\%	96.8\%	3.2\%	1.5\%	74.4\%	5.4\%
\mapsto		Pot	-	100.0\%	99.4\%	85.4\%	-	100.0\%	0.3\%	100.0\%	-	-	89.9\%	2.4\%
		Trawl	20.1\%	99.3\%	99.6\%	15.1\%	65.2\%	92.5\%	3.4\%	85.4\%	0.0\%	76.7\%	97.3\%	30.9\%
		TOTAL	20.1\%	97.7\%	99.6\%	30.3\%	65.2\%	92.3\%	2.2\%	85.6\%	2.8\%	71.1\%	89.6\%	23.9\%
	Pollock	Bot. trawl	96.9\%	97.0\%	100.0\%	85.3\%	70.7\%	80.7\%	6.3\%	10.2\%	6.3\%	49.6\%	99.7\%	14.7\%
		Pel. trawl	69.5\%	99.4\%	98.5\%	92.0\%	97.8\%	85.3\%	68.3\%	5.9\%	2.2\%	85.9\%	97.2\%	6.9\%
		TOTAL	79.3\%	98.9\%	99.3\%	91.1\%	85.0\%	83.9\%	39.0\%	6.0\%	5.8\%	75.2\%	97.9\%	7.2\%
	Sablefish	Hook\&line	-	97.9\%	$-$	17.1\%	100.0\%	100.0\%	0.0\%	100.0\%	0.0\%	0.7\%	99.6\%	4.9\%
		Trawl	98.0\%	71.6\%	-	49.0\%	0.0\%	90.4\%	0.0\%	99.1\%	0.0\%	0.0\%	99.1\%	65.4\%
		TOTAL	98.0\%	79.2\%	-	21.7\%	93.8\%	90.4\%	0.0\%	99.1\%	0.0\%	0.6\%	99.4\%	14.0\%
	Rockfish	Hook\&line	-	100.0\%	-	94.4\%	-	100.0\%	0.0\%	100.0\%	0.0\%	0.0\%	100.0\%	26.0\%
		Trawl	48.6\%	69.9\%	-	21.4\%	36.1\%	72.0\%	15.7\%	96.9\%	1.7\%	9.8\%	94.2\%	32.0\%
		TOTAL	48.6\%	69.9\%	-	22.7\%	36.1%	72.1\%	15.7\%	96.9\%	1.6\%	9.8\%	94.2\%	32.0\%
	Other	ALL	100.0\%	100.0\%	-	90.9\%	100.0\%	97.6\%	61.6\%	100.0\%	100.0\%	73.7\%	48.0\%	57.9\%
	Grand Total		12.9\%	80.0\%	36.9\%	8.3\%	47.7\%	85.9\%	7.0\%	8.5\%	0.7\%	15.8\%	94.1\%	11.6\%

Table 26. Discard rates (discarded/total catch) of allocated groundfish species and species groups by target fishery and gear in the Bering Sea/Aleutian Islands, 1991 Target species discard rates by fishery are listed in bold.

Table 27. Discard rates (discarded/total catch) of allocated groundfish species and species groups by target fishery and gear in the Bering Sea/Aleutian Islands, 1992 Target species discard rates by fishery are listed in bold.

Table 28. Discard rates (discarded/total catch) of allocated groundfish species and species groups by target fishery and gear in the Bering Sea/Aleutian Islands, 1993. Target species discard rates by fishery are listed in bold.

Allocated Species or Species Groups													
Target	Gear	Atka mackerel	Arrowtooth flounder	Yellowfin sole	Greenland turbot	Rock sole	Other flatish	Pacific - cod	Pollock	Sablefish	Rockrish	Other	detal
Atka mackerel	Trawl	19.5\%	100.0\%	-	98.1\%	90.1\%	79.5\%	49.1\%	73.9\%	0.1\%	79.4\%	100.0\%	26.8\%
Arrowtooth flounder	Hookscline	-	52.7\%	-	76.0\%	-	85.2\%	100.0\%	0.0\%	2.5\%	0.0\%	86.2\%	68.4\%
	Trawl	-	56.9\%	-	0.0\%	100.0\%	88.0\%	0.0\%	100.0\%	0.0\%	58.0\%	100.0\%	64.6\%
	TOTAL	-	54.0\%	-	66.6\%	100.0\%	87.9\%	97.2\%	98.8\%	0.9\%	33.3\%	86.4\%	67.1\%
Yellowfin sole	Trawl	100.0\%	96.4\%	23.0\%	100.0\%	61.5\%	72.5\%	60.2\%	91.1\%	100.0\%	100.0\%	98.5\%	41.0\%
Greenland turbot	Hook\&line	-	84.5\%	-	5.5\%	100.0\%	98.2\%	24.2\%	25.0\%	1.7\%	18.2\%	93.1\%	18.1\%
	Trawl	-	100.0\%	-	24.3\%	100.0\%	28.2\%	0.0\%	86.9\%	0.0\%	20.0\%	98.1\%	45.1\%
	TOTAL	-	84.7\%	-	5.5\%	100.0\%	95.1\%	23.9\%	37.1\%	1.7\%	18.2\%	93.1\%	18.2\%
Rock sole	Trawl	53.7\%	100.0\%	60.5\%	92.9\%	58.4\%	55.4\%	69.0\%	93.3\%	68.2\%	89.8\%	98.0\%	69.0\%
Other flatfish	Trawl .	100.0\%	99.6\%	40.6\%	90.3\%	43.2\%	32.9\%	52.9\%	80.6\%	63.7\%	92.6\%	93.1\%	52.5\%
Pacific cod	Hook\&line	82.6\%	88.6\%	98.1\%	32.6\%	98.1\%	95.4\%	6.7\%	88.3\%	16.4\%	69.7\%	87.3\%	18.8\%
	Jig	-	-	-	-	-	-	0.0\%	-	-	-	-	0.0\%
	Pot	97.0\%	100.0\%	100.0\%	-	100.0\%	-	1.2\%	100.0\%	-	100.0\%	95.4\%	3.8\%
	Trawl	88.4\%	95.3\%	99.6\%	64.6\%	90.1%	94.0\%	12.5\%	91.7\%	5.0\%	66.4\%	93.8\%	49.1\%
	TOTAL	88.3\%	93.3\%	99.5\%	40.2\%	90.1\%	94.1\%	9.2\%	91.5\%	16.0\%	67.0\%	89.0\%	35.6\%
Pollock	Bot. trawl	98.3\%	76.1\%	78.3\%	62.7\%	81.6\%	68.4\%	38.1\%	8.0\%	28.4\%	89.4\%	84.7\%	18.5\%
	Pel. trawl	98.0\%	89.2\%	96.0\%	99.6\%	99.0\%	94.3\%	81.5\%	3.4\%	15.9\%	96.9\%	96.0\%	4.5\%
	TOTAL	98.1\%	82.1\%	87.6\%	91.4\%	85.7\%	84.6\%	56.1\%	3.7\%	26.8\%	94.5\%	91.6\%	5.7\%
Sablefish	Hook\&line	100.0\%	99.0\%	-	78.6\%	100.0\%	100.0\%	47.6\%	100.0\%	1.1\%	29.2\%	97.7\%	35.9\%
	Trawl	-	100.0\%	-	100.0\%	-	100.0\%	-	100.0\%	0.0\%	90.2\%	100.0\%	74.1\%
	TOTAL	100.0\%	99.0\%	-	79.0\%	100.0\%	100.0\%	47.6\%	100.0\%	1.1\%	29.6\%	97.7\%	36.6\%
Rockfish	Hook\& line	0.0\%	100.0\%	-	58.8\%	-	-	74.0\%	100.0\%	7.5\%	26.1\%	100.0\%	41.3\%
	Trawl	41.5\%	88.9\%	100.0\%	12.1\%	93.3\%	55.3\%	26.7\%	91.0\%	9.1\%	13.5\%	83.5\%	28.7\%
	TOTAL	41.5\%	89.0\%	100.0\%	13.2\%	93.3\%	55.3\%	27.6\%	91.0\%	8.7\%	13.6\%	83.7\%	28.8\%
Other	ALL	100.0\%	100.0\%	100.0\%	100.0\%	99.4\%	89.1\%	95.6\%	67.2\%	-	100.0\%	58.3\%	85.3\%
Grand Total		23.9\%	92.9\%	27.4\%	21.1\%	64.8\%	65.9\%	22.1\%	8.1\%	2.2\%	33.2\%	92.3\%	15.7\%

Table 29. Discard rates of allocated groundfish species and species groups by target fishery and gear in the Bering Sea/Aleutian Islands, 1994
Target species discard rates by fishery are listed in bold.

Table 30. Discard rates (discarded/total catch) of allocated groundfish species and species groups by target fishery and gear in the Gulf of Alaska, 1990. Target species discard rates by fishery are listed in bold. 1990 data are based on weekly processor reports, not NMFS blend used in 1991-94.

Table 31. Discard rates (discarded/total catch) of allocated groundfish species and species groups by target fishery and gear in the Gulf of Alaska, 1991.
Target species discard rates by fishery are listed in bold

Allocated Species or Species Groups											
Target fishery	Gear	Atka mackerel	Arrowtooth flounder	Deepwater flatilish	Shallow flatfish	Pacific cad	Pollock	Sablefish	Rockfish	Other	Grand Total
Arrowtooth flounder	Trawl	-	34.9\%	25.7\%	36.4\%	13.7\%	73.1\%	27.3\%	33.2\%	83.8\%	38.3\%
Deepwater flatish	Trawl	-	98.9\%	10.3\%	27.0\%	13.1\%	72.5\%	19.8\%	58.7\%	98.5\%	59.8\%
Shallow flatish	Trawl	-	96.4\%	11.1\%	6.4\%	9.5\%	19.5\%	39.0\%	41.0\%	100.0\%	32.3\%
Pacific cod	Hook\&line	100.0\%	99.6\%	83.1\%	81.2\%	0.9\%	84.7\%	7.8\%	11.3\%	95.2\%	3.1\%
	Jig	-	100.0\%	-	100.0\%	0.0\%	8.3\%	-	0.0\%	-	0.4\%
	Other	-	100.0\%	-	-	0.0\%	-	-	-	100.0\%	4.9\%
	Pot	100.0\%	100.0\%	-	74.6\%	0.5\%	99.1\%	-	54.7\%	74.4\%	2.3\%
	Trawl	99.8\%	98.2\%	24.3\%	74.5\%	2.8\%	93.0\%	3.8\%	41.6\%	99.7\%	24.2\%
	TOTAL	99.8\%	98.2\%	24.5\%	74.5\%	2.3\%	93.0\%	4.5\%	37.7\%	97.8\%	20.0\%
Pollock	Bot. trawl	100.0\%	87.5\%	19.0\%	'52.8\%	6.3\%	14.8\%	2.9\%	21.4\%	98.3\%	21.5\%
	Pel. trawl	100.0\%	99.2\%	97.9\%	58.7\%	9.6\%	3.1\%	67.8\%	62.2\%	95.4\%	3.4\%
	TOTAL	100.0\%	88.8\%	19.9\%	53.2\%	6.8\%	4.8\%	4.8\%	32.8\%	97.6\%	6.8\%
Sablefish	Hook\&line	100.0\%	99.9\%	99.7\%	100.0\%	85.7\%	100.0\%	1.3\%	53.6\%	100.0\%	14.6\%
	Trawl		88.8%	75.0%		51.2%	100.0%	11.7\%	28.9\%	100.0\%	58.1\%
	TOTAL	100.0\%	99.2\%	90.5\%	100.0\%	85.3\%	100.0\%	1.3\%	53.1\%	100.0\%	15.1\%
Rockfish	Hook\&line	100.0\%	96.3\%	70.0\%	0.0\%	4.1\%	0.0\%	5.1\%	7.7\%	100.0\%	12.1\%
	Jig	-	-	-	-	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
	Trawl	89.3\%	80.0\%	60.1\%	76.9\%	13.1\%	89.1\%	4.5\%	13.1\%	92.5\%	30.7\%
	total	89.3\%	80.0\%	60.5\%	76.6\%	12.0\%	89.0\%	4.5\%	12.6\%	92.7\%	29.7\%
Other	ALL	1.0\%	99.1\%	11.0\%	57.9\%	4.0\%	70.5\%	5.6\%	66.3\%	7.9\%	15.0\%
Grand Total		10.2\%	89.9\%	18.5\%	60.2\%	3.5\%	14.9\%	2.4\%	20.1\%	69.4\%	19.3\%

Table 32. Discard rates (discarded/total catch) of allocated groundfish species and species groups by target fishery and gear in the Gulf of Alaska, 1992 Target species discard rates by fishery are listed in bold

	Allocated Species or Species Groups											
	Targel fishery	Gear	Atka mackere	Arrowtooth flounder	Deepwater Llatfish	Shallow flatfish	Pacific cod	Pollock	Sablefish	Rockfish	Other	Grand Total
	Arrowtooth flounder	Hook\&lin	-	95.8\%	43.8\%	100.0\%	100.0\%	100.0\%	100.0\%	68.1\%	100.0\%	98.2\%
	.	Pot	-	100.0\%	-	-	100.0\%	100.0\%	.	100.0\%	100.0\%	100.0\%
		Trawl	-	21.4\%	56.3\%	3.4\%	68.8\%	96.6\%	91.6\%	23.7\%	97.0\%	57.1\%
		TOTAL	-	24.3\%	55.9\%	58.8\%	73.7\%	96.8\%	92.8\%	25.2\%	99.3\%	61.4\%
	Deepwater flatish	Jig	-	-	0.0\%	-	-	-	-	0.0\%	-	0.0\%
		Trawl	0.0\%	98.9\%	12.7\%	17.3\%	21.3\%	77.3\%	20.5\%	48.0\%	99.7\%	58.9\%
		TOTAL	0.0\%	98.9\%	12.7\%	17.3\%	21.3\%	77.3\%	20.5\%	48.0\%	99.7\%	58.9\%
	Shallow flatfish	Hook\&lin	-	-	-	0.0\%	0.0\%	-	0.0\%	-	-	0.0\%
		Trawl	-	100.0\%	19.8\%	10.5\%	29.8\%	55.6\%	10.1\%	13.6\%	99.5\%	39.0\%
		TOTAL	-	100.0\%	19.8\%	10.5\%	29.8\%	55.6\%	10.1\%	13.6\%	99.5\%	39.0\%
	Pacific cod	Hook\&lin	100.0\%	99.7\%	89.6\%	99.6\%	1.3\%	86.0\%	58.9\%	23.4\%	98.7\%	7.5\%
		Jig	-	-	-	-	0.2\%	0.0\%	- .	1.0\%	0.0\%	0.2\%
\pm		Other	-	-	-	100.0\%	0.1\%	4.9\%	- ,	-	0.0\%	0.2\%
		Pot	100.0\%	100.0\%	100.0\%	74.9\%	1.6\%	48.1\%	100.0\%	23.1\%	56.3\%	2.6\%
		Trawl	10.3\%	98.8\%	29.7\%	61.9\%	3.3\%	86.3\%	28.4\%	51.5\%	99.8\%	22.5\%
		TOTAL	27.0\%	98.9\%	30.9%	62.0\%	(2.6%	86.3\%	48.3\%	44.8\%	95.8\%	17.6\%
	Pollock	Bot. trawl	-	98.4\%	17.8\%	28.1\%.	8.5\%	7.8\%	14.3\%	76.0\%	96.7\%	11.9\%
		Pel. trawl	-	96.0\%	90.5\%	97.8\%	21.5\%	8.0\%	2.9\%	48.7\%	97.0\%	9.2\%
		TOTAL	-	97.7\%	23.5\%	42.1\%	11.7\%	8.0\%	12.7\%	73.1\%	96.9\%	9.9\%
	Sablefish	Ilook\&lin	100.0\%	99.4\% ${ }^{\text {' }}$	99.4\%	100.0\%	65.7\%	100.0\%	1.4\%	36.3\%	99.8\%	23.4\%
		Trawl	-	68.8\%	4.8\%	100.0\%	39.2\%	100.0\%	6.0\%	100.0\%	100.0\%	60.2\%
		TOTAL	100.0\%	99.1%	99.3\%	100.0\%	656\%	100.0\%	1.4\%	36.3\%	99.8\%	23.4\%
	Rockfish	Hook\&lin	-	100.0\%	100.0\%	0.0\%	3.9\%	100.0\%	22.1\%	0.2\%	53.1 \%	2.1\%
		Jig	-	.	-	-	0.0\%	-	-	0.0\%	,	0.0\%
		Other	-	-	-	-	-	-	-	0.0\%	-	0.0\%
		Pot	-	-	-	-	0.0\%	-	-	0.0\%	-	0.0\%
		Trawl	55.1\%	94.3\%	53.4\%	47.2\%	31.4\%	74.5\%	21.5\%	18.1\%	76.5\%	33.3\%
	.	total	55.1\%	94.3\%	53.4\%	47.2\%	28.9\%	74.5\%	21.5\%	17.1\%	76.2\%	31.9\%
	Other	ALL	4.0\%	98.1\%	59.6\%	53.3\%	57.3\%	87.1\%	36.5\%	65.8\%	7.8\%	20.6\%
	Grand Total		4.7\%	97.6\%	38.2\%	35.6\%	4.7\%	16.7\%	4.2\%	23.5\%	51.9\%	21.4\%

Table 33. Discard rates (discarded/total catch) of allocated groundfish species and species groups by target fishery and gear in the Gulf of Alaska, 1993.
Target species discard rates by fishery are listed in bold

Allocated Species or Species Groups											
Targes	Gear	Atka mackerel	Arrowtooth flounder	Deepwater flatish	Shallow flatilish	Pacific cod	Pollock	Sablefish	Rockfish	Oiher	Grand Total
Arrowtooth flounder	Hook\&line	-	5.5\%	100.0\%	-	58.9\%	100.0\%	50.9\%	79.4\%	100.0\%	45.2\%
	Trawl	-	33.5\%	36.9%	30.8\%	18.8\%	95.7\%	28.7\%	56.0\%	94.0\%	37.5\%
	TOTAL	-	33.2\%	36.9\%	30.8\%	22.1\%	95.8\%	34.2\%	56.8\%	94.1\%	37.7\%
Deepwater flatfish	Hook\&line	-	-	0.0\%	-	-	-	0.0\%	0.0\%	-	0.0\%
	Trawl	-	98.6\%	15.8\%	23.1\%	45.9\%	95.7\%	33.2\%	47.4\%	98.0\%	62.1\%
	TOTAL	-	98.6\%	15.8\%	23.1\%	45.9\%	95.7\%	33.1\%	47.4\%	98.0\%	62.1\%
Shallow flatish	Trawl	100.0\%	95.0\%	23.9\%	25.7\%	49.6\%	72.2\%	37.0\%	75.5\%	99.6\%	49.1\%
Pacific cod	Hook\&line	100.0\%	100.0\%	100.0\%	100.0\%	2.5\%	87.6\%	13.2\%	7.5\%	99.6\%	11.4\%
	Jig	-	-	-	-	0.0\%	--	-	0.0\%	-	0.0\%
	Other	-	-	-	-	0.0\%	-	-	-	-	0.0\%
	Pot	100.0\%	100.0\%	100.0\%	100.0\%	0.8\%	99.6\%	0.0\%	53.5\%	63.1\%	2.3\%
	Trawl	54.5\%	100.0\%	52.8\%	61.8\%	4.6\%	45.0\%	36.6\%	93.4\%	99.6\%	16.2\%
	TOTAL	88.8\%	100.0\%	52.9\%	62.0\%	3.5\%	45.9\%	28.5\%	82.5\% ${ }^{\text { }}$	94.0\%	12.9\%
Pollock	Bot. trawl	-	100.0\%	27.2\%	55.1\%	50.1\%	9.4\%	8.0\%	35.7\%	99.9\%	21.0\%
	Pel. Irawl	100.0\%	90.1\%	74.7\%	44.5\%	62.4\%	5.0\%	7.2\%	59.6\%	98.7\%	6.1\%
	TOTAL	100.0\%	96.7\%	28.6\%	54.4\%	52.2\%	5.8\%	7.9\%	42.7\%	99.5\%	9.3\%
Sablefish	Hook\&line	-	98.1\%	99.7\%	100.0\%	72.5\%	97.7\%	1.6\%	43.0\%	98.4\%	19.0\%
	Trawl	-	100.0\%	89.7\%	-	23.4\%	100.0\%	5.7\%	50.1\%	100.0\%	51.7\%
	TOTAL	-	98.2\%	99.6\%	100.0\%	72.3\%	99.3\%	1.6\%	43.1\%	98.4\%	19.2\%
Rockfish	Hook\&line	-	65.8\%	95.7\%	0.0\%	12.9\%	55.6\%	32.1\%	1.3\%	89.3\%	5.2\%
	Jig	-	-	-	-	0.0\%	-	-	0.0\%	-	0.0\%
	Trawl	48.9\%	86.4\%	75.4\%	73.1\%	70.7\%	100.0\%	3.8\%	31.2\%	64.0\%	35.3\%
	TOTAL	48.9\%	86.4\%	75.4\%	65.0\%	63.3\%	100.0\%	4.8\%	29.6\%	65.7\%	33.8\%
Other	ALL	5.3\%	99.6\%	15.9\%	68.7\%	62.1\%	95.2\%	8.4\%	92.0\%	10.0\%	26.8\%
Grand Total		7.9\%	92.0\%	29.5\%	35.3\%	10.4\%	7.6\%	3.3\%	37.3\%	73.1\%	19.9\%

Table 34. Discard rates (discard/total catch) of allocated groundfish species and species groups by target fishery and gear in the Gulf of Alaska, 1994. Target species discard rates by fishery are listed in bold.

Table 35. Bycatch of prohibited species by target fishery and gear type in the Bering Sea/Aleutian Islands region in 1990 1990 data are based on weekly processor reports and observed bycatch rates, not NMFS blend data (used in 1991-94). Halibut are listed as tons of catch, not tons of mortality.

Target Eishery	Gear	Halibuld	Herrins	Chinook salmon H	Other salmon\#	Red king crab ${ }^{\text {H }}$	Other king crab	Bairdi tanner crab fi	Other tanner crab \#
Alka mackerel	Trawl	138	-	90	234	259	-	252	-
Arrowtooth flounder	Trawl	3	-	5	2	14	-.	5,717	-
Yelluwfin sute	Trawl	53	15	19	14	900	-	112,976	-
Greenland turboi	Hook + line	22	-	-	-	-	-	7	-
	Trawl	159	1	88	81	1,184	-	2,955	-
	TOTAL	181	1	88	81	1,184	-	2,962	-
Rock sole	Trawl	283	1	197	11	58,105	-	403,197	-
Other flatfish	Trawl	2	-	- 1	1	484	-	4.792	-
Pacific cod	Hook + line	1,736	-	4	22	2	-	1,496	-
	Other	1	-	2	1	9	-	137	-
	Pot	21	-	,-	-	9,762	-	20,023	-
	Trawl	1,455	3	3,264	107	18,912	-	431,222	-
	TOTAL	3,214	3	3,270.	130	28,685	-	452,877	-
Pollock	Bot. trawl	665	58	1,344	1,723	7,339	-	176,204	-
	Pel. Lrawl	2,181	3,174	8,694	13,807	11,526	-	566,404	-
	TOTAL	2,846	3,232	10,039	15,530	18,865	-	742,608	-
Sablefish	Hook+line	332	-	, -	0	-	-	46	-
	Trawl	5	-	5	0	47	-	2,120	-
	TOTAL	337	-	- 5	0	47.	-	2,167	-
Rockfish	Hook + line	2	-	-	-	-	-	0	-
	Trawl	126	0	93	206	583	-	2.909	-
	TOTAL	128	0	93	206	583	-	2,909	-
Other	ALL	19	-	7	28	76	-	1,268	-
Grand Total		7.206	3,252	13,813	16,239	109,201	-	1,731,725	-

Table 36. Bycatch of prohibited species by target fishery and gear type in the Bering Sea/Aleutian Islands region 1991. Halibut are listed as tons of catch, not tons of mortality.

Table 37. Bycatch of prohibited species by target fishery and gear type in the Bering Sea/Aleutian Islands region 1992.
Halibut are listed as tons of catch, not tons of mortality.

Target Eishery	Gear	Halibul	Herring.	Chinook salmon H	Other salmon t	Red king crab	Other king crab \#	Bairdi tanner crab \#	Other tanner crab ${ }^{t}$
Alka mackerel	Trawl	109	-	38	8	130	12,289	564	-
Arrowtooth flounder	Trawl	1	0	-	-	-	482	12,237	744
Yellowfin sole	Trawl	846	409	185	1,042	62,660	58.544	1,547,867	11,215;706
Greenland wurbot	Hook + line	14	-	-	-	-	-	-	8
Rock sole	Trawl	804	7	51	-	60.728	15,743	632.421	913,163
Other flation	Hook + line	0	-	-	-	-	0	-	-
	Trawl	42	3	2	-	1,520	2,407	280.318	1,366,023
	TOTAL	42	3	2	-	1,520	2,407	280.318	1,366,023
Pacific cod	Hook + line	7,848	-	55	113	2,987	1,048	22,971	12,456
	Jig	0	-	-	-	.	.	-	.
	Pot	112	-	-	-	10.551	17.121	240.536	135,338
	Trawl	1,777	9	4,869	32	122	394	198,286	98,130
	TOTAL	9.737	9	4,924	145	13,660	18,562	461,793	245.924
Pollock	Bot. Urawl	583	17	4.974	432	35.874	8.047	467.714	1.033.404
	Pel. Lrawl	1,677	630	31,095	39.870	8.029	12,871	1,056,902	368,476
	TOTAL	2,259	648	36.069	40,302	43,903	20,918	1,524,616	1,401,880
Sablefish	Hook+line	222	-	-	-	45	487	3	997
	Trawl	1	-	-	-	-	-	-	-
	total	223	-	-	-	45	487	3	997
Rockilish	Hook + line	0	-	-	-	-	-	-	3
	Trawl	235	0	1,167	5	873	2,809	4,188	802
	TOTAL	235	0	1,167	5	873	2.809	4,188	805
Other	ALL ${ }^{\text {. }}$	9	0	1	0	8	19	-	4,196
Grand Total		14,279	1,076	42,438	41,502	183,527	132,261	4,464,007.	15,149,446

Table 38. Bycatch of prohibited species by target fishery and gear type in the Bering Sea/Aleutian Islands region 1993.
Halibut are listed as tons of catch. not tons of mortality.-

Target Eishery	Gear	Halibus	Herring	Chinook salmont	Other salmon*	Red king crab䒜	Other king crab 卉	Bairdi tanner crab H	Other tanner crab ${ }^{\text {E }}$
Atka mackerel	Trawl	296	-	2	176	-	5,542	119	10
Arrowlooth flounder	Hook + line	4	-	-	-	-	-	-	-
	Trawl	1	-	-	-	-	-	-	-
	TOTAL	5	-.	-	-	-	-	\bullet	-
Yellowfin sole	Trawl	874	220	210	146	18,706	5.969	1,021,074	9,818,766
Greenland turbot	Hook + line	612	-	-	4.	3	1,260	34	2,282
	Trawl	0	-	-	-	-	-	-	83
	TOTAL	612	-	-	4	3	1,260	34	2,365
Rock sole	Trawl	692	7	27	357	171,549	77,951	455,376	2.513.713
Other flatish	Trawl	136	13	79	203	2,785	29,073	103,045	1,958,677
Pacifie cod	Hook + line	2,433	-	62	-	428	978	8,840	145,508
	Pot	8	-	-	-	12	-	1,595	1,218
	Trawl	1,862	24	6,246	142	1,324	1,172	230,590	184,936
	TOTAL	4,302	24	6,308	142	1,765	2,150	241,025	331,661
Pollock	Bot. uawl	702	8	4,188	2,609	49,370	1,628	1,279,103	534,152
	Pel. trawl	641	520	34,450	239,654	9,550	405	392,461	217,946
	TOTAL	1,344	528	38,638	242,263	58,920	2,033	1,671,565	752,098
Sablefish	Hook + line	287	-	-	5	6	2,450	8	621
	Trawl	1	-	-	14	-	530	-	163
	TOTAL	289	-	-	19	6	2,980	8	785
Rockfish	Hook + line	62	-	-	-	6	32	-	1
	Trawl	211	0	1,121	74	140	6,169	902	512
	'TOTAL	273	0	1,121	74	146	6,201	902	513
Other	ALL	23	0	-	-	1,618	4	8,893	861
Grand Toual		8,845	792	46,384	243,384	255,499	133,165	3,502,040	15,379,450

Table 39. Bycatch of prohibited species by target fishery and gear type in the Bering Sea/Aleutian Islands region 1994. Halibut are listed as tons of catch, not tons of mortality.

Target Fishery	Gear ${ }^{\prime}$	Halibut	Herring:	Chinook salmon h	Other salmon \#	Red king - crab \#	Other king crab \#	Bairdi tanner crab \#	Other tanner crab H
.									
Alka mackerel	Trawl	246	-	2,272	231	-	1,422	6	-
Yellowfin sole	Trawl	827	86	53	237	16,881	'12,898	1,142,486	8,673,012
Greenland turbol	Hook+line	328	-	7	-	18	233	-	206
	Trawl	926	-	58	-	329	6,028	1,916	278,043
	TOTAL	1,254	-	64	-	347	6,261	1,916	278,249
Rock sole	Trawl	947	13	342	-	216,819	23,106	603,838	855,096
Other flatfish	Trawl	209	4	669	53	- .	491	125,381	1,414,360
Pacific cod	Hook + line	6,982	- .	25	13	155	425	24,523	15,841
	Jig	96	-	92	-	-	-	-	-
	Pot	52	-	-	-	628	2,322	23,513	23,062
	Trawl	2,090	3	6,855	1,218	1,269	2,160	273,486	312,707
	TOTAL	9,220	3	6,972	1.231	2,052	4,906	321,522	351,610
Pollock	Bot. trawl	359	81	1,842	7,452	42,430	616	225,246	551,276
	Pel. trawl	619	1,576	32,080	87,085	1,451	612	150,567	356,086
	TOTAL	979	1,657	33,923	94,537	43,881	1,228	375,813	907,361
Sablefish	Hook+line	257	-	2	27	119	1,314	21	656
	Pot	6	-	-	0	-	11	-	7
	Trawl.	9	-	-	3	-	270	590	6,954
	TOTAL	272	-	2	30	119	1,594	611	7.618
Rockfish	Hook + line	4	-	-	-	0	21	-	0
	Trawl	74	-	118	94	1,636	25,771	136	9
	TOTAL	78	-	118	94	1,637	25,792	136	9
Other	ALL	0	-	-	0	- .	-	2	2
Grand Total		14,032	1,762	44,414	96,414	281,736	77,700	2,571,711	12,487,317

Table 40. Bycatch of prohibited species by target fishery and gear type in the Gulf of Alaska region in 1990.
1990 data are based on weekly processor reports and observed bycatch rates, not NMFS blend data (used in 1991-94). Halibut are listed as tons of catch, not tons of mortality.

Target Fishery	Gear	Halibuı	Herring-	Chinook salmon.	Other salmon $\frac{H}{}$	Red king crab \#	Other king crab\# \#	Bairdi tanner crab \#	Other tanner crab H
Arrowtooth flounder	Trawl	95	-	323	25	22	-	250	-
Deepwater flatfish	Hook + line	2	-	-	-	-	-	-	-
	Pot	0	,-	-	-	-	-	-	-
	Trawl	355	-	4,444	91	122	-	5,160	-
	TOTAL	357	-	4,444	91	122	-	5,160	-
Shallow flatfish	Pot	2	-	-	-	-	-	976	-
	Trawl	187	-	266	28	3	-	2,822	-
	TOTAL	189	-	266	28	3	-	3,798	-
Pacific cod	Hook+line	720	-	-	-	5	-	27	-
	Other	1	-	1	1	3	-	52	-
	Pot	261	-	455	-	15,369	-	100,424	-
	Trawl	1,688	-	3,543	1,376	187	-	22,111	-
	TOTAL	2,670	-	3,999	1,376	15,564	-	122,614	-
Pollock	Bot, trawl	506	-	1,482	1,121	25	-	24,111	-
	Pel. trawl	427	-	3,401	514	20	-	22,823	-
	TOTAL	933	-	4,883	1,635	44	-	46,935	-
Sablefish	Hook + line	6,594	-	-	62	89°	-	290	-
	Pot	-		-	-	-	-	-	-
	Trawl	15	-	10	8	0	-	520	-
	TOTAL	6,609	-	10	69	89	-	810	-
Rockfish	Hook+line	89	-	-	0	-	-	0	-
	Jig	0	-	0	0	0	-	1	-
	Pot	0		-	-	-	-	1	-
	Trawl	925	-	2,186	866	45	-	9,935	-
	TOTAL	1,015	-	2,186	866	45	-	9,937	-
Other	ALL	36	-	110	42	0	, -	40	-
Grand Total ,		11,904	-	16,220	4,133	15,888	-	189,543	-

Table 41. Bycatch of prohibited species by target fishery and gear type in the Gulf of Alaska region in 1991. Halibut are listed as tons of catch. not tons of mortality.

Target Eishery	Gear	Halibut	Herring!	Chinook salmon H	Other salmon \#	Red king crab \#	Other king 	Bairdi tanner crab \#	Other tanner crab\#
Arrowtooth flounder	Trawl	19	-	66	0	-	45	5	449
Deepwater flatish	Hook+line	2	-	-	-	-	-	-	-
	Trawl	1,349	0	4,008	464	88	963	11,913	2,913
	TOTAL	1,351	0	4,008	464	88	963	11,913	2,913
Shallow. flatfish	Trawl	75	-	125	17	5	2	7,791	15
Pacific cod	Hook+line	1,009	-	-	-	-	-	8	55
	Jig	9	- -	-	-	-	-	-	-
	Other	-	- -	.	-	-	-	-	-
	Pot	56	0	-	-	119	-	32,462	-
	Trawl	939	0	3,797	20	4	0	50,854	493
	TOTAL	2,013	0	3,797	20	123	0	83.324	548
Pollock	Bot. crawl	266	-	4,026	134	-	-	17,712	586
	Pel. trawl	55	1	4,661	12,735	-	-	782	2
	TOTAL	321	1	8.687	12,869	-	-	18,494	588
Sablefish	Hook+line	4,254	-	\cdot	6	-	436	340	1,553
	Traw]	5	-	-	-	-	5	681	-
	TOTAL	4,259	-	-	6	-	441	1.021	1,553
Rockfish	Hook + line	58	-	-	-	-	0	-	0
	Jig	44	-	-	-	\cdot	-	-	-
	Trawl	1,438	0	21,080	1,037.	2	569	10.992	2,985.
	TOTAL	1,541	0	21,080	1,037	2	569	10,992	2,985
Other	ALL	56	-	64	126	-	1	112	7
Grand Total		9;635	1	37.827	14,538	218	2,022	133,651	9,057

Table 42. Bycatch of prohibited species by target fishery and gear type in the Gulf of Alaska region in 1992. Halibut are listed as tons of catch, not tons of mortality.

Target Eishery	Gear	Halibus	Herrings	Chinook salmon \#	Other	Red king crab H	Other king crab ${ }^{H}$	Bairdi tanner crab H	Other tanner crab \#
Arrowtooth flounder	Hook + line	2	-	-	-	-	-	-	-
	Trawl	-	-	-	-	-	-	-	-
	TOTAL	2	-	-	-	-	-	-	-
Deepwater flatish	Jig	0	-	-	-	-	-	-	-
	Traw	1,076	\cdot	1,996	625	47	-	39,750	593
	TOTAL	1.076	-	1,996	625	47	-	39,750	593
Shallow flatish	Hook + line	0	-	-	-	-	-	-	-
	Trawl	316	0	102	88	10	62	20.554	21
	TOTAL	316	0	102	88	10	62	20,554	21
Pacific cod	Hook+line	3,245	-	-	-	-	4	278	117
	Jig	16	-	-	-	-	.	-	-
	Other	-	-	-	-	-	-	-	-
	Pot	101	-	-	-	22	-	25,239	7
	Trawl	886	-	4,439	55	18	-	40,997	1.846
	TOTAL	4.248	-	4.439	55	40	4	66,514	1.971
Pollock	Bot. trawi	163	0	4,520	157	-	184	3.548	744
	Pel. trawl	13	26	3.761	6.633	-	0	1,892	1
	TOTAL	177	27	8,282	6,790	-	184	5.439	745
Sablefish	Hook+line	4,095	-	19	144	-	395	167	10,000
	Trawl	2	-	3	-	-	-	14	-
	total	4,097	-	21	144	-	395	181	10,000
Rockfish	Hook+line	83	-	-	-	\because	-	0	-
	Jig	33	-	-	-	-	-	-	-
	Other	-	\cdot	-	-	-	-	-	-
	Pot	-	-	-	-	-	-	-	-
	Trawl	821	0	2,187	3,600	-	545	8,045	434
	total	938	0	2.187	3,600	-	545	8,045	434
Other	ALL	180	-	110	-	-	-	365	173
Grand Total		11,034	27	17,137	11.301	97	1.190	140,847	13,938

Table 43. Bycatch of prohibited species by target fishery and gear type in the Gulf of Alaska region in 1993. Halibut are listed as tons of catch, not tons of mortality.

Target Eishery	Gear	Halibut	Herring ${ }_{\text {d }}$	Chinook salmon \#	Other salmon \#	Red king crab b	Other king crab ${ }^{H}$	Bairdi tanner cгab \#	Other tanner crab \#
Arrowtooth flounder	Hook+line	15	-	-	-	-	-	-	13.
	Trawl	97	0	34	-	- -	1	411	-
	TOTAL	112	0	34	-	-	1	411	13
Deepwater flatfish	Hook+line	2	-	-	-	-	-	-	-
	Trawl	964	-	2,786	195	-	49	7,394	2,542
	TOTAL	965	-	2,786	195	- .	49	7,394	2,542
Shallow flatfish	Trawl	945	-	1,207	1,021	868	3	27,304	2,737
Pacific cod	Hook+line	- 580	-	. -	-	- .	-	62	185
	Pot	48	-	-	-	-	22	20,367	3,622
	Trawl	702	0	1,234	626	197	2	21,696	. -
	TOTAL	1,330	0	1,234	626	197	23	42,125	3,807
Pollock	Bot. trawl	138	0	924	34,134	-	- -	640	-
	Pel. trawl	2	6	12.743	51.391	-	-	-	- -
	TOTAL	140	6	13,667	85,525	-	-	640	-
Sablefish	Hook+line	8.630	-	69	275	-	1,468	1,078	19,169
	Trawl	4	-	33	-	-	-	-	23
	TOTAL	8,635	-	101	275	-	1,468	1.078	19.192
Rockfish	Hook + line	121	i	-	- -	-	3	-	-
	Trawl	465	\cdot	237	439	-	1,320	1	2,798
	TOTAL	586	-	237	439	-	1,323	1.	2,798
Other	ALL	. 96	-	302	152	-	-	5	266
Grand Total		12,808	6	19,569	88,234	1,065	2,868	78,958	31,355

Table 44. Bycatch of prohibited species by target fishery and gear type in the Gulf of Alaska region in 1994. Halibut are listed as tons of catch, not tons of mortality.

Target Eishery	Gear	Halibuts	Herring	Chinook salmon \#	Other salmon ${ }^{H}$	Red king scrab H	Other king crab \#	Bairdi tanner crab.\#	Other tanner crab ${ }^{\text {\# }}$
Alka mackere!	Trawl	23	-	56	28	-	-	10	44
Arrowtooth flounder	Trawl	139	0	139	-	-	-	3,766	11
Deepwater flatfish	Trawl	1,905	-	4,126	165	-	295	15,761	1,130
Shallow flatish	Trawl	394	0	102	114	46	10	8,806	35
Pacific cod	Hook + line	1,011	, -	2	-	-	-	173	123
	Pot	84	-	-	-	18	-	15,315	1,577
	Trawl	1,100	0	1,852	144	2	-	4,512	22
	TOTAL	2,196	0	1,854	144	21	-	20,000	1,723
Pollock	Bot. [rawl	73	2	1,715	8,215	-	164	1,211	654
	Pel. trawl	19	100	5,877	31.157	-	-	8	-
	TOTAL	92	102	7,592	39,373	-	164	1,219	654
Sablefish	Hook + line	5,104	-	-	124	6	567	810	6,888
	Trawl	22	-	22	-	-	-	3	9
	TOTAL	5,126	-	22	124	6	567	813	6,897
Rockfish	Hook + line	497	-	-	-	-	18	-	-
	Trawl	205	-	136	345	-	5,088	2,921	2,914
	TOTAL	702	-	136	345	-	5,106	2.921	2,914
Other	ALL	0	-	0	0	-	-	-	0
Grand Total		10,577	102	14,027	40,292	73	6,142	53,295	13,409

Table 45. Estimated catches (t) of other species by the Bering Sea/Aleutian Islands groundfish fisheries in 1990 using observer target fishery, gear and subarea bycatch rates and weekly processor reported target species catches. "-" < 0.5 mt of estimated catch. This is essentially a detailed breakdown of the Other Species category in Table 5, but resulting in different totals.

* Misc. = eelpouts, snipe eels, greenlings, and lumpsuckers.

Table 46. Estimated catches (t) of other species by the Bering Sea/Aleutian Islands groundfish fisheries in 1991 using observer target fishery, gear and subarea bycatch rates and NMFS blend target species catches. "-" < 0.5 mt of estimated catch.
This is essentially a detailed breakdown of the Other Species category in Table 6, but resulting indifferent totals (see text).

* Misc. = eelpouts, snipe eels, greenlings, and lumpsuckers.

Table 47. Estimated catches (t) of other species by the Bering Sea/Aleutian Islands groundfish fisheries in 1992 using observer target fishery, gear and subarea bycatch rates and NMFS blend target species catches. "-" < 0.5 mt of estimated catch.
This is essentially a detailed breakdown of the Other Species category in Table 7, but resulting in different totals (see text).

Table 48. Estimated catches (t) of other species by the Bering Sea/Aleutian Islands groundfish fisheries in 1993 using observer target fishery, gear and subarea bycatch rates and NMFS blend target species catches. "-" $<0.5 \mathrm{mt}$ of estimated catch.
This is essentially a detailed breakdown of the Other Species category in Table 8, but resulting in different totals (see text).

Table 49. Estimated catches (t) of other species by the Gulf of Alaska groundfish fisheries in 1990 using observer target fishery, gear and subarea bycatch rates and weekly processor reported target species catches. "-" < 0.5 mt of estimated catch. This is essentially a detailed breakdown of the Other Species category in Table 10, but resulting in different totals (see text).

Fishery	Gear	Squid	Octopus	Smelts	Sharks	Skates	Sculpins	Grenadiers	Misc. *	Total
Arrowtooth	Trawl	1	0	0	0	18	4	14	0	37
Bottom Pollock	Hook\&line	-	-	-	3	10	-	-	0	13
	Trawl	1	1	22.	131	124	68	12	6	365
Cod	Hook\&line	-	4	0	16	139	44	4	4	210
	Pot	-	69	4	0	-	48	-	0	122
	Trawl	0	6	7	49	465	656	0	13	1,197
Deepwater Flatfish	Trawl	-	-	-	-	-	-	- -	-	-
Other	Trawl	0	0	-	-	-	0	-	0	1
Pelagic Pollock	Trawl	0	0	28	28	2	0	0	1	59
Rockfish	Hook\&line	3	-	0	10	42	-	462	-	518
	Trawl	54	8	66	16	58	118	623	3	946
Sablefish	Hook\&line	0	1	0	74	280	1	8,386	0	8,742
	Trawl	0	0	0	0	50	1	128	0	181
Shallow flatfish	Trawl	-	0	0	2	9	13	-	0	25
Total	\cdots	60	90	127	330	1,197	954	9,630	28	12,415

* Misc. = hagfish, ratfish, eelpouts, snipe eels, greenlings, poachers, and lumpsuckers.

Table 50. Estimated catches (t) of other species by the Gulf of Alaska groundfish fisheries in 1991 using observer target fishery, gear and subarea bycatch rates and NMFS blend target species catches. "-" < 0.5 mt of estimated catch.
This is essentially a detailed breakdown of the Other Species category in Table 11, but resulting in different totals (see text).

Table 51. Estimated catches (t) of other species by the Gulf of Alaska groundfish-fisheries in 1992 using observer target fishery, gear and subarea bycatch rates and NMFS blend target species catches. "-" < 0.5 mt of estimated catch.
This is essentially a detailed breakdown of the Other Species category in Table 12, but resulting in different totals (see text).

Fishery	Gear	Squid	Octopus	Smelts	Sharks	Skates	Sculpins Grenadiers		Misc. *	Total
Arrowtooth	Hook\&line	-	-	-	0	0	-	3	-	3
	Trawl	0	0	0	0	4	1.	5	0	9
Bottom Pollock	Hook\&line	-	0	-	-	0	0	-	-	1
	Trawl	7	4	156	150	131	180	2	7	637
Cod	Hook\&line	-	8	109	146	1,031	114	4	1	1,412
	Pot	-	102	15	-	0	70	-	0	187
	Trawl	0	12	6	19	226	761	13	12	1,050
Deepwater Flatfish	Trawl	89	-	-	-	43	27	6,618	-	6,777
Other	Trawl	0	0	-	1	6	47	-	3	59
Pelagic Pollock	Trawl	27	0	72	35	1	0	18	3	156
Rockfish	Hook\&line	-	0	3	8	28	0	218	0	257
	Trawl	18	2	165	3	73	45	292	8	604
Sablefish	Hook\&line	1	3	2	46	346	0	11,843	0	12,243
Shallow Flatfish	Hook\&line	-	-	-	-	-	-	-	-	
	Trawl	-	3	3	13	129	182	-	1	330
Total		142	135	531	421	2,019	- 1,427	19,016	35	23,725

* Misc. = hagfish, ratfish, eelpouts, snipe eels, greenlings, poachers, and lumpsuckers.

Table 52. Estimated catches (t) of other species by the Gulf of Alaska groundfish fisheries in 1993 using observer target fishery, gear and subarea bycatch rates and NMFS blend target species catches. "-" < 0.5 mt of estimated catch.
This is essentially a detailed breakdown of the Other Species category in Table 13, but resulting in different totals (see text).

* Misc. = hagfish, ratfish, eelpouts, snipe eels, greenlings, poachers, and lumpsuckers.

Bering Sea/Aleutian Islands Fixed Gear Fisheries

Bering Sea/Aleutian Islands Roundfish Trawl Fisheries

Bering Sea/Aleutian Islands Flatfish Trawl Fisheries

Figure 1. Total discard rates of Bering Sea/Aleutian Islands groundfish fisheries from 1991-94 (using blend data). Total discard rate equals discards of all allocated groundfish and other species divided by total catch of allocated groundfish and other species (not including prohibited species).

Figure 2. Total discard rates of Gulf of Alaska groundfish fisheries from 1991-94 (using blend data). Total discard rate equals discards of all allocated groundfish and other species divided by total catch of allocated groundfish and other species (not including prohibited species).

Bycatch Discard Mortality

Review of Literature on Discard Mortality

Discarded catch, whether an undesirable species or size, contributes to the fishing-related mortality of many marine living resources. Discard mortalities vary-with gear types and deployment duration, surface exposure duration and sorting methods, weight of catch for net fisheries, and environmental conditions (Alverson et al. 1994). In general, fish species mortality rates decrease with increasing size, and crustacean species mortality rates are relatively high during molting or softshell stages (Wassenberg and Hill, 1989; Stevens, 1990). High discard mortality rates also tend to increase energy flows to the scavenger species that consume fisheries-generated waste.

Quantitative estimates of discard mortality rates are fairly limited in number and in geographical representation (Table 53). A large amount of discard mortality research has been generated by the International Council for the Exploration of the Sea (ICES), which focuses on the northern Atlantic Ocean. Outside of the North Atlantic, much of the relevant research is dedicated to incidental catch in shrimp and prawn fisheries, primarily because those fisheries have been associated with some of the highest bycatch rates in the world. In domestic fisheries off the coast of Alaska, fisheries managers and scientists have addressed the mortality rates of halibut, salmon, and king and Tanner crab in groundfish fisheries. This research pattern follows the North Pacific trend of separating and protecting halibut, salmon, and crab from fisheries bycatch and discard. However, assessment scientists now include discards in their estimates of total catch for all managed groundfish species in the GOA and eastern Bering Sea, assuming 100% mortality rates for the discards. Expanded discard research in the North Pacific would provide estimates of mortality effects on a given marine ecosystem, and improve long-term fish population productivity through fishing gear and method modification suggestions.

Gear-Related Factors Influencing_Mortality

Trawl gear is often associated with high discard mortality rates. Fish caught in trawl nets may be fatigued from trying to swim with the speed of the net, crushed by the weight of the towed catch, have scales removed by net abrasions, or suffer damage under close proximity to spiny or predatory fish. Discard mortality rate increases are often directly related to the length of trawl time primarily because long tow times raise the overall weight of the catch and the
pressure of that weight on each individual in the catch (van Beek et al. 1989). Hard-shell crustaceans generally suffer less discard mortality than fish or cephalopods, particularly if they do not lose limbs during the trawl (Wassenberg and Hill, 1990).

Longline gear does not cause as much overall body damage to fish as trawl gear, but the hooks do inflict puncture wounds to the head area (Neilson et al. 1989). Hook injuries have also been noted in troll fisheries for Pacific salmon, where survival rates were greatly improved with the introduction of barbless hooks (Alverson et al. 1994). One advantage of longline gear in reducing discard mortalities is that fish caught by longlines tend, to have shorter handling times than those caught by trawl gear. The length of time that bycatch lies exposed on deck usually relates directly to discard mortality rates (Neilson et al. 1989; van Beek et al. 1989; Evans et al. 1994). Longline gear allows fishing crews to deal with each individual as it comes out of the water, limiting deck exposure for both target and non-target species. However, longline gear may have longer capture times and increased mortality may result.

Pot gear is associated with low discard mortality rates for fish and crab, although the rates vary with the frequency of pot retrieval. Once fish begin to gather inside the pots, their close proximity to each other increases the spread of scale infections or puncture wounds inflicted by spiny fish. Death by scale. infections may also be a pitfall, for researchers holding incidentally caught fish in tanks in order to determine discard mortality over time (Millner et al., 1993). Direct body damage, however, is limited in pot fisheries, because the crushing weight of the trawl and the puncture of the hook are eliminated. In the intensive North Pacific crab pot fisheries, the effects of repeated captures and surface exposures may compound crab mortality rates (Shirley, 1990). Although discard mortality rates for crab in pot gear are low, the total number of discarded crab in Bering Sea pot fisheries is very high, and total mortality of discarded crab in pot fisheries may exceed that of trawl fisheries (Stevens and MacIntosh, 1993).

Table 53. Summary of literature relating to estimates of bycatch mortality rates.

Reference
Fishery/Gear
Bycatch species
\% Mortality/Time

Table 53 (continued).

Reference	Fishery/Gear	Bycatch species	\% Mortality/Time
Kennelly, et al. (1990)	Australian Spanner Crab/Tangle-net	Spanner Crab	$35 \% / 24$ hours if "pulled off" net $5 \% / 24$ hours if "quickly removed" 0 if "carefuly removed" 62% of those $w / 2$ legs removed/ 24 hours
Millner, et al. (1993)	North Sea Shrimp/Trawl	Plaice	$\begin{aligned} & 30 \% \text { for } 13-25 \mathrm{~cm} \\ & 65 \% \text { for }<8 \mathrm{~cm} \end{aligned}$
	North Sea Plaice/Otter Trawl	Plaice	$20 \% / 9$ days from 1 hour tow 37% / 9 days from 2 hour tow
Murawski and Serchuk (1989)	NW Atlantic Scallop/Dredge	Scallop	< 5\% uncaught scallops crushed 10% for discarded
	NW Atlantic Qhahog/Dredge	Quahog	40-60\% uncaught clams crushed 10% for discarded
	NW Atlantic Surf Clam/Dredge	Surf Clam	50% for discarded
Neilson, et al (1989)	NW Atlantic Groundfish/Trawl	Atlantic Halibut	65\% / 48 hours from 2 hour trawl
	NW Atlantic Groundfish/Longline	Atlantic Halibut	23\% / 48 hours
van Beek, et al. (1989)	North Sea Groundfish/Trawl	Sole	. 40% for those that escape net
		Sole \& Plaice	90\% for 2 hour trawl
		Sole \& Plaice	75\% for 1 hour trawl
-			
Wassenberg and Hill (1989)	Australia Prawn/Trawl	Fish	$50 \% / 0.25$ hours "few still alive" / 8 hours in holding tanks
		Crabs	12-30\%

A gear type that is particularly damaging to crabs is the tangle-net, used in the Australian spanner crab fishery and formerly used in the Alaska crab fisheries. This fishing method uses bait to entice crabs to walk across an entangling mesh net, where they are trapped until they are brought to the surface. If the crabs are removed from the net with care, they are far more likely to survive the discard process. Unfortunately, researchers noted that fishermen generally took less care in removing undersized crabs from the tangle nets, since they were unmarketable (Kennelly et al., 1990). This experiment is relevant to other gear types because it shows increased mortality rates for those crabs that had lost legs or dactyli due to brusque removal from the net. Fisheries that risk entangling or removing crustacean limbs should be viewed as inherently dangerous to crustacean bycatch survival rates.

Murawski and Serchuk (1989) experimented with the mortality rates associated with the dredge gear fisheries for U.S. Atlantic scallop (Phacopecten magellanicus), quahog (Arctica islandica) and surf clam (Spisula solidissima) fisheries. Dredges that skim just above the bottom for scallops tend to either catch or miss the scallops without crushing them. The hydraulic dredges used to harvest quahogs and surf clams, however, can be quite destructive and crush many of the bivalves that are not caught in the dredges. Dredges and certain types of trawl gear have also been noted for their destructive impacts to benthic environments. (Murawski and Serchuk, 1989; van Beek et al., 1989).

Other Factors Influencing Discard Mortality

Fisheries discard mortality rates can be affected by post-catch sorting methods, particularly with regard to the length of time organisms spend out of the water. Neilson et al. (1989) found that for Atlantic halibut survival as incidental catch, the length of handling time had a multiplicative effect with the length of trawl tow time in determining mortality rates. Long tow times coupled with long handling times were exponentially more likely to result in halibut death than short tow times coupled with short handling times. Conversely, Wassenberg and Hill (1989) found that, in an Australian prawn fishery, handling time had little effect on mortality because the extreme mortality rate caused by the trawling process preempted any measurement of the effects of prolonged deck exposure. Once deck-time begins to affect Pacific halibut survival, survival rates of Pacific halibut decrease to zero after about 20 minutes (Pikitch and Erickson, 1993).

Evans et al. (1994) discovered that crustaceans are also affected by long handling times in a study on the fate of bycatch in the North Sea Nephrops fishery. Experimentally caught
Nephrops that were left on deck for 1 hour suffered a 15% mortality rate. Commercial Nephrops fishing vessels tend to leave their catch on deck for 24 hours, which increases the mortality rate to 79%. These authors also noted that 70% of the discarded catch was eaten by seabirds immediately upon reaching the sea surface: Thus, even the discarded Nephrops that had survived extended deck exposure were unlikely to reach their sea floor habitat.

Associated species in the catch tend to contribute to mortality rates if they are particularly tenacious predators, or if their bodies have sharp spikes to puncture other fish in the catch (Neilson et al. 1989). Non-commercial animals associated with the target species may have an affect on mortality rates; surface scavengers, like seabirds, prevent discarded organisms from re-entering their proper habitats. Environmental conditions may also have an indirect effect on discard mortality by influencing fishing methods. Fishermen may be inclined to sort their catch more quickly in rough weather, or to leave fixed gear, like pots, in place longer to avoid struggling with the weather.

Discard Mortalities in North Pacific Groundfish Fisheries

North Pacific groundfish fisheries inflict mortality on the following categories of species, 1) target groundfish species, 2) prohibited species, and 3) non-target groundfish species. For in-season catch and fishing mortality monitoring, it is assumed that all groundfish and other species, except for halibut, caught and discarded at-sea are returned to the sea dead. For most of the trawl-caught fish, both flatfish and roundfish, this assumption is probably valid for discards. Similarly, most roundfish, but particularly those inhabiting slope and outer shelf environments, would probably not survive the ordeal of capture by any gear and the subsequent return to the ocean. For prohibited species, all herring, salmon, and crab are assumed to die after capture, but Pacific halibut are not. Based on research on survival of halibut released after capture by trawls (Hoag, 1975) and numerous observations of halibut on-deck condition prior to release by fisheries using all gear types, estimates were made of the percentage mortality of halibut in each groundfish fishery (Williams, 1989). Based on additional years of data collection in 1990-93 in both the BSAI and GOA, Williams (1994) recommended halibut mortality rates for each gear, fishery and area for 1995 (Table 54). As expected, halibut mortality rates associated with fixed gear (longline and pot) fisheries were lower than those from trawl fisheries. Variation in mortality rates between trawl fisheries was
associated with size of hauls (larger hauls associated with greater mortality) and time-on-deck (or out of water). Application of these mortality rates to the 1994 halibut bycatch amounts in Tables 39 and 44 results in a reduction to $5,712 \mathrm{t}$ of estimated halibut mortality associated with the BSAI groundfish fisheries, and to $3,892 \mathrm{t}$ of estimated halibut mortality associated with the GOA groundfish fisheries.

Catch weights of discards for targeted species in groundfish fisheries can be compared to population biomass and to total catches (discards + retained) in the BSAI and GOA (Tables 55-56). As noted before, these discards are accounted for in stock assessments of the main groundfish species targets. Discard amounts relative to population biomass are low, ranging from 5\% of biomass for arrowtooth flounder to less than 1% of population biomass for Atka mackerel and sablefish in the BSAI and less than 2% of any of the allocated species biomasses in the Gulf of Alaska. Highest discard amounts relative to total catch occur for arrowtooth flounder and the miscellaneous species category "other." Rock sole and other flatfish in the Bering Sea also have high discard percentages of around 60-75\% of total catch. Intermediate discard rates (2540% of total catch) are seen in the rockfish, yellowfin sole, Greenland turbot, deepwater flatfish, and shallow flatfish groups. The lowest discard rates ($2 \%-17 \%$) are seen for sablefish, Atka mackerel, pollock and cod.

Discard mortalities for prohibited species in groundfish fisheries can be compared to the amounts landed of each prohibited species in their respective target fisheries and to population size (Table 57). The weight of dead halibut discarded in groundfish fisheries in the Bering Sea is approximately equal to landed weight in the Bering Sea halibut fishery but is only about 3.5% of the estimated population biomass in that area. Many of the halibut caught in groundfish fisheries in the BSAI are juveniles, which might have recruited to other areas such as the Gulf of Alaska or even off the coast of British Columbia. The amount of dead halibut discarded in groundfish fisheries in the Gulf of Alaska is only about 11% of halibut landings in that area. Herring bycatch in groundfish fisheries in the eastern Bering Sea during 1993 was only 3% of herring landings in the eastern Bering Sea. The amount of chinook and other (primarily chum) salmon caught in groundfish fisheries could be around 20% of the landed catch by number in the Bering Sea and less than 4% in the Gulf of Alaska. However, because chum salmon are wide-ranging, the rivers of origin for chum salmon intercepted by groundfish fisheries could be rivers that empty into the Gulf of Alaska, Bering Sea, and also the western side of the North Pacific Ocean. Mortality of crab in the eastern Bering Sea groundfish fisheries is' around 18% of the landed number of bairdi Tanner crab and 9% of the red king
crab landings in that area. Because some of the bairdi Tanner crab caught by groundfish fisheries are pre-recruit crab, the actual number of those pre-recruits that would have survived to enter the directed crab fishery is less than the number caught by groundfish fisheries.

Table 54. Halibut discard mortality rates recommended by the International Pacific Halibut Commission for the 1995 Bering Sea-Aleutian Islands and Gulf of Alaska groundfish fisheries (from Williams 1994).

Area	Target	Gear	Discard Mortality Rate
BSAI	Pollock	Pelagic Trawl	89\%
		Bottom Trawl	77
	Atka mackerel	Trawl	59
	Rock sole/Other flatfish	Trawl	75
	Pacific cod	Trawl	65
		Hook\&line	18
		Pot	8
	Rockfish	Trawl	69
		Hook\&line	24
	Yellowfin sole	Trawl	76
	Arrowtooth flounder	Trawl	49
	Greenland turbot	Trawl	48
		Hook\&line	19
	Sablefish	Hook\&line	17 ,
GOA	Pollock	Pelagic Trawl	66
		Bottom Trawl	70
	Rockfish	Trawl	66
		Hook\&line	18
	Shallow flatfish	Trawl	64
	Deepwater flatfish	Trawl	59
	Pacific cod	Trawl	58
		Hook\&line	20
		Pot	18
	Sablefish	Hook\&line	25

Table 55.-- Groundfish fishery discards and total catch (retained + discarded) biomass as a fraction of population biomass and discards as a fraction of total catch biomass in the eastern Bering Sea and Aleutian Islands for 1990 to 1994.

Year	Allocated Groundfish Species									
	Atka mackerel	Arrowtooth Ilounder	Yellowfin sole	Greenland turbot	Rock sole	Other flatfish	Pacific cod	Pollock	Sablerish	Rockfish
1990*										
Discard/Biomass	0.003	0.017	0.002	0.005	0.007	0.013	0.011	0.013	0.001	0.012
Total catch/Biomass	0.024	0.021	0.006	0.064	0.014	0.015	0.162	0.152	0.075	0.073
Discard/Total catch	0.129	0.800	\%) 0.369	0.083	0.477	0.859	0.070	0.085	0.007	0.158
1991										
Discard/Biomass	0.002	0.050	0.011	0.024	0.017	0.024	0.020	0.023	0.002	0.010
Total catch/Biomass	0.020	0.059	0.043	0.068	0.031	0.032	0.254	0.238	0.083	0.034
Discard/Total catch	0.122	0.842	0.243	0.350	0.553	0.746	0.079	0.097	0.019	0.292
1992										
Discard/Biomass	0.007	0.025	0.016	0.020	0.015	0.025	0.031	0.016	0.001	0.014
Total catch/Biomass	0.034	0.027	0.054	0.026	0.026	0.030	0.265	0.178	0.056	0.055
Discard/Total catch	0.194	0.938	0.292	0.753	0.590	0.823	0.117	0.091	0.022	0.251
1993										
Discard/Biontass	0.012	0.015	0.011	0.018	0.019	0.017	0.045	0.015	0.002	0.025
Total catch/Biomass	0.050	0.016	0.039	0.087	0.030	0.026	0.204	0.181	0.092	0.076
Discard/Total catch	0.239	0.929	0.274	0.211	0.648	0.659	0.221	0.081	0.022	0.332
1994										
Discard/Biomass	0.009	$0.023{ }^{-}$	0.014	0.026	0.018	0.014	0.035	0.016	0.004	0.021
Total catch/Biomass	0.060	0.024	0.053	0.110	0.027	0.022	0.203	0.208	0.082	0.063
Discard/Total catch	0.149	0.956	0.256	0.239	0.656	0.630	0.171	0.077	0.047	0.340
91.94 avg										
Discard/Biomass	0.007	0.028	0.013	0.022	0.017	0.020	0.033	0.017	0.002	0.018
Total catch/Biomass	0.041	0.032	0.047	0.073	0.028	0.028	0.231	0.201	0.078	0.057
Discard/Total catch	0.176	0.916	0.266	0.388	0.612	0.715	0.147	0.086	0.027	0.304

* 1990 discard data are based on weekly processor reports, not NMFS blend used in 1991-1994.

Table 56.-- Groundfish fishery discards and total catch (retained + discarded) biomass as a fraction of population biomass and discards as a proportion of total catch biomass in the Gulf of Alaska for 1990 to 1994. (- means no biomass or discard estimate was available.)

Year	Allocated Groundfish Species							
	Atka mackerel	Arrowtooth Mounder	Deepwater Clatfish	Shallow flatfish	Pacific cod	Pollock	Sablefish	Rockfish
1990*								
Discard/Biomass	-	0.014	0.005	0.014	0.004	0.006	0.003	0.010
Total catch/Biomass	-	0.015	0.017	0.025	0.142	0.069	0.121	0.059
Discard/Total catch	-	0.905	0.271	0.553	0.025	0.084	0.026	0.176
1991								
Discard/Biomass	-	0.015	-	:	0.006	0.012	0.002	-
Total catch/Biomass	-	0.017	-	-	0.173	0.077	0.105	-
Discard/Total catch	0.10	0.90	0.18	0.60	0.03	0.15	0.02	0.20
1992								
Discard/Biomass	-	0.016	-	-	0.009	0.013	0.005	-
Total catch/Bionass	-	0.016	-	-	0.199	0.076	0.115	-
Discard/Total catch	0.047	0.976	0.382	0.356	0.047	0.167	0.042	0.235
1993								
Discard/Biomass	0.019	0.013	0.008	0.010	0.016	0.008	0.004	0.016
Total catch/Biomass	0.239	0.015	0.026	0.027	0.153	0.111	0.111	0.043
Discard/Total catch	0.079	0.920	0.295	0.353	0.104	0.076	0.033	0.373
1994								
Discard/Biomass	-	0.017	-	-	0.008	0.009	0.004	0.019
Total catch/Biomass	-	0.017	-	-	0.132	0.149	0.113	0.065
Discard/Total catch	0.077	0.980	0.214	0.275	0.064	0.061	0.038	0.294
1991-94 avg								
Discard/Biomass	0.019	0.015	0.008	0.010	0.010	0.010	0.004	0.017
Total catch/Biomass	0.239	0.016	0.026	0.027	0.164	0.103	0.111	0.054
Discard/Total catch	0.076	0.944	0.269	0.396	0.062	0.113	0.034	0.276

* 1990 discard data are based on weekly processor report, not NMFS blend used in 1991-1994.

Table 57. - Groundfish fishery discard mortality of prohibited species, expressed as a fraction of target fishery landings and population size in 1993, assuming mortality rates for halibut from Williams and Wilderbuer (1993), 100\% mortality for other fish and 80% mortality for crab.

Area	Prohibited species	Units	Discard mortality/ Target catch ${ }^{1}$	Discard mortality/ population ${ }^{2}$
BSAI				
	Pacific halibut	metric tons	1.09	0.035
	Pacific herring	metric tons	0.03	0.006
	Chinook salmon	number	0.21	0.073
	Other salmon ${ }^{3}$	number	0.21	0.061
	Red king crab	number	0.09	0.005
	Bairdi Tanner crab	number	0.18	0.014
GOA	`			
	Pacific halibut	metric tons	0.11	0.006
	Chinook salmon	number	0.04	0.065
	Other salmon ${ }^{3}$	number	0.01	0.021
${ }^{1}$ Target fishery landings do not include estimates of at-sea discards in the target fishery.
${ }^{2}$ Halibut biomass is from trawl survey estimates of $<80 \mathrm{~km}$ fish and IPHC CAGEAN model estimates of age $8+$ fish (round weight).
Salmon run size estimates are from D. Rogers, Fisheries Research Institute, University of Washington, 1993 estimates for Chum salmon run size were used for other salmon population. Chinook population estimates were the average of 1990-92 run sizes.
${ }^{3}$ Assumes most other salmon are chum salmon-target fishery landings are of chum salmon. Although chum salmon caught in one region could have rivers of origin from another region the population numbers used are those from the region of capture.

Estimates of mortality due to discards in the target fisheries or in other non-groundfish fisheries are not available for all prohibited species. However, these discard mortalities can be larger than those induced by groundfish fisheries. For example, the bycatch of bairdi Tanner crab in crab pots during the 1993 bairdi crab season was estimated to be $68,910,000$ crabs. If a mortality factor of 8% (from Table 53) is applied to these, then discard mortality of bairdi crab in crab pot fisheries was about 36% of the landed number of bairdi crab, which was $15,317,000$ crabs. Similarly, for red king crab in 1992 the crab pot fishery discarded around $7,320,000$ crabs. If mortality is again assumed to be around 8%) then crab pot fishery discard mortality of red king crab was around 40% of the red king crab landings, which were $1,415,000$ crabs, or about four times larger than the mortality induced by groundfish fishery discards shown in Table 57.

Finally, it is possible that the amount of "other" species caught and discarded in groundfish fisheries could be an important source of mortality for those species. The mortality of groups such as skates, sculpins and grenadiers, which make up the largest bycatch amount for "other" species in groundfish fisheries, has not been explicitly considered in the past. The amount of these "other" species groups discarded in groundfish fisheries can be compared to biomass estimates of these species to get an idea of the impact of fisheries on these groups (Table 58). Exploitation rates (catch biomass/population biomass) are low for skates and sculpins in the BSAI and GOA areas, ranging from 14%. The exploitation rate for grenadiers in the Gulf of Alaska appears high (32%) but biomass estimates of grenadiers are severely underestimated by bottom trawl surveys in the GOA that only cover bottom depths up to 500 m since the majority of grenadier biomass is found in deeper waters. It is likely the true exploitation rate of grenadiers is close to those of skates and sculpins.

Table 58. Bycatches of three "other" species groups in the groundfish fisheries of the Bering Sea/Aleutian Islands region (BSAI) and Gulf of Alaska (GOA) as percentages of the estimated biomasses of each group in each region. For the BSAI, percentages represent ranges from 1990-1993; for the GOA, data are from 1993.

"Other" species groups

			"Other" species groups	
Region	Period	Skates	Sculpins	Grenadiers 1
BSAI	$1990-93$	$1.0-4.3 \%$	$2.1-4.5 \%$	$0.5-2.0 \%$
GOA	1993	3%	4%	32%

${ }^{1}$ Grenadier biomass is largely underestimated in recent trawl surveys that cover depths of less than 500 m .

Ecological Impacts

Several aspects of the current fishing, discarding, and processing practices of North Pacific groundfish fisheries have the potential to alter the regular paths of energy flow and balance in the BSAI and GOA. Although estimated mortality due to direct removals and discard of utilized groundfish species is accounted for in the stock assessment process, little is known about the ecosystem-level effects, of selective harvesting on only a small number of species. Also, fishing removes biomass from the system but discarding and fish processing return some biomass back to the system. The recipients, locations, and forms of this returned biomass may differ from those in an unfished system. Finally, the fishing process itself may cause unobserved mortalities in animals escaping through the trawl mesh or caught by abandoned pots or longlines. Mortality of bottom-dwelling animals can also be caused by the mechanical, action or weight of fishing gear on the bottom.

Effects of Selective Fishing

The fishing process selectively removes certain species and sizes of fish. This selection process could alter the balance between predators and prey and thus the species composition of the ecosystem. If the species composition is much different from the "natural" state the system could be more unstable. Another concern expressed in recent years is the negative effects of "fishing-down" the food web, or the practice of intensively harvesting top-predators and then moving down the food web to harvest forage of top-predators (Christie, 1993). Yield enhancements expected through this fishing-down process have not materialized in regions where this practice has been implemented. In fact, the recent steps taken toward multispecies management in the northwest Atlantic Ocean (Shelton, 1992) and in the Southern Ocean have been directed at limiting the target catches of forage species such as capelin (Mallotus villosus) and krill (Euphausiidae).

In a review of marine regions where species replacement changes occurred, Daan (1980) noted that overfishing was a likely trigger. He found that changes in species composition in other regions where overfishing was not occurring were more likely environmentally driven cyclic fluctuations. An analysis of trends in species composition in the eastern Bering Sea (Livingston et al., 1994) showed that although there have been fluctuations in species biomass in some groups over the last 15 years, these fluctuations do not appear to be linked to exploitation rates. Exploitation rates in this region have been conservative when compared to regions where replacement changes due to overfishing have occurred.

To determine whether North Pacific fisheries were "fishing-down" the food web, the trophic level of the catch in the eastern Bering Sea, Aleutian Islands, and Gulf of Alaska areas was calculated bydetermining the trophic level of each species in the catch from published accounts of diet for non-groundfish species and the food habits database of the Alaska Fisheries Science Center for groundfish species. Trophic level (e.g., 1 for phytoplankton, 2 for consumers of primary production, 3 for consumers of secondary production) of the total catch was determined by weighting the trophic level of each species in the catch by the proportion (by weight) of that species in the total catch and summing the weighted trophic levels in each year. Stability in the trophic level of the total fish and invertebrate catches in the eastern Bering Sea, Aleutian Islands, and Gulf of Alaska (Fig. 3) are an indication that the "fishing-down" effect is not occurring in these regions. Catch biomass in the eastern Bering Sea has consisted mainly of pollock since the late 1960s. In the Aleutian Islands area catches were mostly Pacific ocean perch in the 1960s and walleye pollock, Pacific cod, and Atka mackerel in the late 1970s to the present. Gulf of Alaska catches in the 1960s were dominated by rockfish and changed to pollock-dominated catches in the 1980s with declining contributions of pollock to the total catch in the 1990s. Although, there has been a general increase in the amount of catch since the late 1960s in all areas, the trophic level of the catch has been high and stable over the last 25 years. A trophic level of 4 indicates the dominance of top-level predators in the catch.

The combination of relatively conservative exploitation rates and high trophic level of the catches over the last 15 years, at least in the eastern Bering Sea, could be responsible for the relative stability of overall community composition over this recent period shown by Livingston et al. (1994). A study of the trophic levels of the catch in the North Sea (Yang, 1982) showed the apparent stability of the North Sea ecosystem during a period when the trophic level of the catch was high. Recent analysis of the North Sea community structure (Anon., 1994) confirms the stability of community diversity of that area even though fishing has apparently changed the shape of the size spectrum via the removal of large predators. However, these factors cannot explain the obvious changes that have occurred in the abundance of several species in the North Pacific, notably the declines in red king crab and some piscivorous bird species in the Bering Sea and Steller sea lions in the Gulf of Alaska. There have also been large declines in whale and fur seal populations prior to 1979. Environmental changes or localized habitat alteration by fishing have been suggested as possible explanations but no conclusive evidence exists to identify the causative factor(s).

Eastern Bering Sea

Aleutian Islands

Figure 3. --Historical estimates of the total biomass and trophic level of the fish and invertebrate catch (excluding salmon) in the eastern Bering Sea, Aleutian Islands region, and Gulf of Alaska.

Consumers of Discards and Fish_Processing Offal

Several years of groundfish food habits data collected by the Trophic Interactions Program at the Alaska Fisheries Science Center confirm the consumption of fish processing offal by fish in the eastern Bering Sea, Aleutian Islands region, and Gulf of Alaska. Estimates of groundfish consumption of offal in the Bering Sea during the main feeding season show a level of offal consumption by several species of groundfish approaching $200,000 \mathrm{t} / \mathrm{yr}$ (Table 59). Although the estimated total amount of offal consumed by pollock is fairly high at around $45,000 \mathrm{t} / \mathrm{yr}$, the percentage of offal in the diet is less than 1% by weight. It is the large biomass of pollock relative to other predators that brings its estimated consumption up to this level. Pacific cod consumed the most offal compared to other groundfish in 1990 and 1991. The percentage by weight of offal in the diets of Pacific cod and skates is higher than the other groundfish species sampled in the eastern Bering Sea.

Diet information on groundfish from the Gulf of Alaska and Aleutian Islands region (Yang, 1993 and 1995) also show several species consuming unground offal (Table 60). In the Gulf of Alaska, sablefish had the largest percentage by weight of offal in the diet (29%), followed by Pacific cod (13\%) and Pacific halibut (7\%). The amount of offal in the diet of groundfish from the Aleutian Islands region is low, except for northern rockfish (Sebastes polyspinis) (9\% of the diet by weight). It should be noted that the diet percentages for the Gulf of Alaska and Aleutian Islands region were derived from grouping all food habits data for a species over the whole region. Lower percentages would likely result from predator-size and area stratification of the diet information.

An estimate of the amount of offal returned to the sea by at-sea and onshore processors can be obtained from subtracting the total round weight of the groundfish catch retained and processed from the product weight, which is available for 1994 (see Table 61). Estimated atsea offal production in the GOA and BSAI is $862,483 \mathrm{t}$ (= round weight of the catch $(1,240,858 \mathrm{t})$ - product weight ($378,375 \mathrm{t}$)) and shoreside offal production is $477,312 \mathrm{t}$. Presumably, the majority of offal produced at sea is in the Bering Sea and consists of pollock parts. Based on the estimates in Table 59, it appears that groundfish in the eastern Bering Sea consume at least 20% of offal production. This compares to an estimate of about 11% of total discards consumed by fish and crab in a study area off Australia (Wassenburg and Hill, 1990).

Table 59.- Estimated amounts of offal consumed (metric tons) by groundfish on the eastern Bering Sea shelf during the main feeding season, May through September. (ns - not sampled).

Groundfish predator	Year			
	90	91	92	Avg
		:		
Pacific cod	86,789	82,577	35,067	68,144
Walleye pollock	45,117	51,851	37,023	44,664
Arrowtooth flounder	21,350	3,933	2,977	9,420
Flathead sole	28,656	7,067	32,351	22,692
Yellowfin sole	114	35,853	13,477	16,481
Pacific halibut	1,029	- 0	2,466	1,165
Skates	ns	ns	36,192	12,064
Total	183,055	181,281	159,553	174,630

> Table 60 .-- Estimates of percentages by weight of offal in the diets of groundfish in the Gulf of Alaska during 1990 and the Aleutian Islands region in 1991 (from Yang (1993) and Yang (1995), ns - not sampled).
Groundfish predator Gulf of Alaska Aleutian Islands
Pacific cod 13 <1
Walleye pollock 0 0
Arrowtooth flounder 1 0
Pacific halibut 7 1
Sablefish 29 nsAtka mackerelnsns
Northern rockfish ns 91

Other upper-trophic level scavenger species likely to benefit from offal production include sculpins, crabs, other predatory invertebrates, and marine birds such as gulls, kittiwakes, and fulmars. Studies performed in, the North Sea and Australia indicate that birds are a likely recipient of discards and offal thrown overboard during daytime and which do not immediately sink (Anon., 1994; Evans et al., 1994; Wassenburg and Hill, 1990), while crabs may be the first to arrive in areas when discards reach the bottom (Wassenburg and Hill, 1987). Offal not consumed by these predators would presumably be decomposed by bacteria and also become available as detritus for benthic filter-feeding invertebrates.

Estimates are not available for groundfish consumption of whole animal discards in the BSAI and GOA areas. When analyzing stomach contents of groundfish, it is impossible to discern whether a whole animal in the stomach contents was consumed when alive or dead. Presumably, whole discards are consumed by many of the same scavengers that consume unground offal.

Table 61 provides a summary of the magnitude of offal and discard amounts relative to catch in the BSAI and GOA groundfish fisheries. The weight of offal returned to the sea is almost four times as large as the weight of discards. About 70% of the target catch is returned as,
offal. Almost 60% of the total catch becomes offal while only 15% of the total catch is discarded whole. Obviously, when considering energy transfer in the ecosystem, offal production overshadows discard amounts. The large proportion of the total catch returned to the sea as offal and discards could reduce any potential impacts of fishing to energy loss in these areas. However, availability of the returned energy (as offal and discards) to various ecosystem components may differ from that of the undisturbed energy form (live fish).

Ecosystem level concerns about discards and offal production primarily center on the possibility that these fishery practices might alter the regular paths of energy flow and enhance the growth of scavenger populations. In the eastern Bering Sea, at least one-half of the discards and most of the offal produced are from pollock. Most of the remaining discards tends to be flatfish such as yellowfin sole (Pleuronectes asper) and rock sole. All of the groundfish species found to be consumers of offal (Table 60) are also predators of pollock, and some of them (Pacific cod and halibut) also consume flatfish (Livingston et al., 1993). The scavenging birds (gulls, fulmars, kittiwakes), are also documented predators of pollock (Hunt et al., 1981). The annual consumptive capacity of these scavenging birds, groundfish, and crab in the eastern Bering Sea alone is over an order of magnitude larger than the total amount of offal and discards in the BSAI and GOA (Livingston, unpublished data). Since many of the main predators of pollock are consuming offal and discards, it appears that the practice of returning them to the ocean may not significantly disrupt regular paths of energy flow when the geographic location of the return to the sea is close to the capture location. Although fishing removes some biomass from the system, the actual amount removed in the BSAI and GOA is much less than the total catch would indicate. A large proportion of the total catch is, in-fact, returned and apparently consumed by predators.

Even if offal and discards are not used by the upper trophic level scavengers that are a regular part of the energy pathway for pollock and flatfish, the total amount of dead organic material (detritus) that would reach the bottom is' small relative to other natural sources of detritus. Walsh and McRoy (1986) estimate detrital flow to the middle and outer shelf of the eastern Bering Sea to be $188 \mathrm{gCm}^{2} \mathrm{yr}^{-1}$ and $119 \mathrm{gCm}^{2} \mathrm{yr}^{-1}$, respectively. When converted to biomass over the whole area ${ }^{4}$, an estimated 337.7 million t of naturally-occurring detritus goes to the bottom each year. Approximately 40% (142.9 million t), is unused (Walsh and McRoy, op.

[^1]cit.). The total offal and discard production in the BSAI and GOA as estimated for 1994 (1.3 million t ; Table 61) is only 1% of the estimate of unused detritus already going to the bottom. Simulation model results of discard effects on energy cycling in the Gulf of Mexico (Browder, 1983) confirmed that discards tend to be a small portion of the dead organic material on the bottom. However, depending on model assumptions, changing the amount of discards through full utilization or through selective fishing methods had the potential to change populations of shrimp and its fish competitors. Uncertainty about the predation rates and assumptions about alternate prey utilization indicated a need for further research to fully understand and predict responses of populations to changes in food availability.

Table 61 .-Summary of offal and discard amounts in the BSAI and GOA groundfish fisheries for 1994 compared to total and retained catch amounts.

Category

 Amount (metric tons) or fractionRetained catch
(round weight)
Discarded catch $338,166 \mathrm{t}$
Total catch $2,256,111 \mathrm{t}$(retained + discards).
Offal$1,339,795 \mathrm{t}$(retained round wt - product wt)
Offal + discards 1,677,961 t
Discard/Retained catch 0.18
Discard/Total catch 0.15
Offal/Total catch 0.59
Offal/Retained catch 0.70
(Offal + discard)/Total catch 0.74
Offal/Discards 3.96

Local enrichment and change in species composition in some areas might occur if discards or offal returns are concentrated there. There is evidence that such effects have been seen in Orca Inlet in Prince William Sound and in Dutch Harbor, Alaska. Poor water quality and undesirable species composition have been cited (Thomas, 1994) as the result of the current policy for grinding fish offal released in inshore areas and the inadequate tidal flushing in that region. However, deepwater waste disposal of offal in Chiniak Bay of Kodiak Island has not shown such problems (Stevens and Haaga, 1994). No apparent species composition changes, anaerobic conditions, or large accumulations of offal occurred in Chiniak Bay where such wastes have been dumped for over a decade. Local ocean properties (water depth and flow) and amount of waste discharged per year could be important factors determining the effect of nearshore disposal on local marine habitat and communities.

So far, most of the scavenger populations are not showing obvious signs of increase related to offal production. Kittiwake populations that nest on the Pribilof Islands have apparently declined from 1979 to 1989 (Hatch et al., 1993). Decline in food availability has been cited as a possible reason for the decrease in productivity for both kittiwake species. The distribution and timing of the pollock catch processing has shifted away from a predominance of fishing during summer around the outer shelf to a winter (A season) and summer (B season) fishery that occurs farther south in the outer and middle shelf areas (Fritz, 1993). This shift in fishing distribution away from summer bird foraging areas did not occur until about 1987 (Fritz et al., 1994) and cannot explain the population decline. Northern fulmar (Fulmarus glacialis) population size at the Pribilof Islands is showing a possible increase, particularly from 1989 to 1992. However, there is large variability around fulmar counts that makes determination of the population trend uncertain (Climo, 1993; Dragoo and Sundseth, 1993). Kittiwake population increases have been noted in Chiniak Bay, the site of offal disposal at Kodiak Island. The increases there occurred between the late 1970s and mid-1980s (Hatch et al., op cit.); apparently before offal disposal at that site began. Some of the main scavengers in the groundfish community of the eastern Bering Sea such as Pacific cod, skates, halibut and sculpins have shown a combined biomass of around 1.2 million t in 1979 to over 1.3 million t in 1993 (Livingston et al., 1994). The only member of that group that might be exhibiting a constant increasing trend in biomass is the skates, whose biomass has doubled between 1982 and 1993. Little is known about the skate population, such as size or age-frequency over time, that might provide clues to why this change in biomass has occurred.

Unobserved Mortalities

The fishing process itself may cause unobserved mortalities in animals that escape through the mesh of trawls or that are damaged by the action of the trawl passing over them. In addition, longline and pot gear may continue to fish after being lost or abandoned. A recent review of studies on the condition of fish escaping from fishing gear (Chopin and Arimoto, 1995) found a wide range of estimated mortalities. The percent age mortality of fish escaping from trawl gear ranged' from 9% to 90% depending on the fish species, size of fish, and conditions of the experiment. Fish with an opercular circumference of the same or larger size as the mesh may sustain more physical damage than smaller fish but stress inflicted due to the capture process (e.g., long sustained periods of swimming) can also be an important source of mortality for all fish. The authors suggest that standard protocol for conducting survival experiments, including longer term studies to estimate survival due to stress 'are required before knowledgeable decisions regarding the effect of mesh size restrictions can be evaluated. They advise that management measures undertaken to increase escapement of immature fish by increasing minimum mesh size could also increase mortality and conclude that such measures may not be the best method for protecting immature fish.

The evidence regarding the mortalities of animals in or on the bottom and possible long-term changes in the sea floor due to fishing gear shows mixed conclusions. Comparison of gearinduced mortality rates with natural mortality rates of the benthos in the heavily fished North Sea indicated that natural mortality rates were much larger than those from fishing (Daan, 1991), suggesting that fisheries exert a relatively small influence on the biomass of benthos. Most studies agree, however, that the larger, longer-lived animals in the sediments such as some clams are likely to be the most affected (Daan, 1991; Anon., 1994). Long-term changes in the benthos and persistence of trawl tracks have been found particularly in very deep water (Jones, 1992). Even though direct contact with gear may not inflict direct mortality, the gear action can expose burrowing animals and make them more vulnerable to predation (Kaiser and Spencer, 1994). It has been hypothesized that intensive fishing in an area could promote longterm changes in benthic communities by promoting populations of opportunistic fish species that migrate into fished areas to feed on animals disturbed by the fishing process.

Diet of a benthic-feeder, yellowfin sole, was examined during the period from 1984 to 1991 to determine if any changes have been apparent and could be linked to fishing activities in the eastern Bering Sea (Fig. 4). Prey composition was analyzed in two adjacent areas, a no-trawl
zone (North Pacific Fishery Management Council area 512 where trawling has been excluded since 1986) and a trawl zone (a similar size area just west of area 512 where trawling still occurs in the eastern Bering Sea). No definitive trends in diet composition could be seen between the two areas. Polychaete worm consumption was similar between the two areas and consumption of echiuran worms increased in the trawled area compared to the no-trawl area. Echiurans are relatively short-lived worms that burrow into the sediment. Trawling could expose these animals and make them more vulnerable to predation immediately after a trawl passed through. If trawling were responsible for the increase in predation on echiurans, it would have been expected that the fraction of echiurans in the diet would have been consistently high in the trawl zone over the whole time series and would have declined in the no-trawl zone during the years when no-trawling was in effect (1986-91). Other studies have found an increase in amphipod predation due to the effects of trawling (Kaiser and Spencer, 1994) but our data indicate slightly higher predation on amphipods in the no-trawl zone than in the trawl zone. It is difficult to know whether changes have occurred in the eastern Bering Sea benthos without detailed study of the benthos and its biomass and composition before and after trawling. Yellowfin sole do not consume large, longer-lived clams or colonial ascidians that could be more sensitive indicators of the effects of fishing. However, there does not appear to be any major changes in certain species based on their amounts in the yellowfin sole diet.

Figure 4. --Diet composition of yellowfin sole in the eastern Bering Sea from 1984 to 1991 in two adjacent areas, one with no trawling from 1986 to 1991 and one with trawling from 1984 to 1991.

Catch Utilization

Product Forms

Groundfish harvested in the commercial fisheries of the GOA and BSAI are utilized in a wide variety of ways. The range of product forms extend from relatively "high unit value" products (e.g., roe, individually quick-frozen fillets), to industrial products (oils and meals) and bait. New product forms continue to emerge in response to market opportunities. Indeed, many products which are economically very important to the U.S. industry today were not regarded as products in which U.S. fishers and processors were interested, nor suited to produce, only a relatively few years ago (e.g., surimi or pollock roe). Thus, the list of groundfish products contained in Table 62 should not be regarded as exhaustive or final. Instead, the list reflects the best current information on the variety of products which are presently being prepared by U.S. processors from groundfish harvested in the GOA and BSAI.

Table 62 lists all product forms reported to NMFS from 1994 groundfish harvests off Alaska (the most recent year for which complete data are available). Products are divided among "primary", "ancillary" and "industrial" product forms, based on current regulatory definitions. The list of "primary products" includes outputs such as whole fish, headed-and-gutted product, fillets of various forms, surimi, and minced fish. In commercial practice in these fisheries, the proportion of the whole fish utilized in the production of these "primary" products reportedly range from 13% to 100%.

Products defined as principally "ancillary" (e.g., roe, heads, and cheeks) are assumed to be produced in addition to a primary product. For example, "cod heads" are presumed to be an ancillary product to headed-and-gutted cod. Processors could, if not explicitly prohibited by regulation, choose to produce traditionally "ancillary" product forms as there "primary" product, under some circumstances. This practice could result in utilization of 5\% or less of the whole fish, by weight, based upon the reported product recovery rates (PRRs), by species, in these fisheries.

Economic, logistic, regulatory, and biological considerations would dictate the extent of such activities. For example, markets forces could induce this behavior for some species and/or product forms over some period of the fishing season. Similarly, logistical considerations within an individual processing facility (e.g., breakdowns, excess deliveries, conflicts with
other fisheries such as salmon, halibut, and crab) could result in diverting fish into product forms generally regarded as "ancillary" (or discarding them altogether). Regulations may also dictate such production decisions. For example, a short duration opening may result in processors maximizing "through put" of a particular species, rather than "utilization" (e.g., roe stripping of pollock), before it was banned. In other circumstances, the "poor condition" of a species during some periods of the year may prompt its use only for "ancillary" product forms.

The specific output form and product mix in the BSAI and GOA groundfish fisheries is highly variable. Production characteristics (i.e., form, grade, and product mix) may vary in response to, among other factors, the type of processing operation (e.g., m-shore or at-sea); the season of the year (e.g., the presence or absence of roe); regulatory restrictions (e.g., roe-stripping prohibition, bycatch-only or non-discretionary discard status); and the nature of the market (e.g., surimi prices are low relative to fillets). It would be incorrect, therefore, to attribute, for example, "high" recovery rates, particular product forms, or specific quality or grades with 'one specific operational type or configuration. Influenced by these biological, technological, regulatory, and economic factors, performance may diverge from operation to operation between and within each category, and even within any given operation, from season to season, and fishery to fishery.

It should be noted that the comparison of physical measures of product output (e.g., PRRs or quantity of output) as a measure of utilization may be misleading. The appropriate comparison is the value of the product produced. For example, if the greatest product recovery from each fish were the correct measure by which to compare alternative product forms, then fish "sold-in-the-round" would always be the preferred form of utilization. Clearly, this is not the case. Instead, the unit value of each product provides an efficient means of making comparisons across product forms and across species. Product price serves as an efficient mechanism to compare the "value" of utilizing a fish to produce, say, a unit of pollock fillets and a unit of pollock headed and gutted (II\&G).

[^2]Table 62 - Reported processed product for all groundfish retained and processed at-sea in the GOA and BSAI in 1994 (t).

Product Form	PRR	Product Wt.	Round Wt.
"Primary" products			
Whole fish	1.0	54,338	54,338
Bled only	0.98	1	1
Gutted only	. $80-.90$	12	17
H\&G w/roe	. $55-.80$	12,182	15,231
H\&G western	. $50-.78$	11,621	18,758
H\&G eastern	. 32 - . 65	87,743	165,931
H\&G tail removed	. 44 - . 62	3,064	5,002
Kirimi	0.48	17,251	35,914
Salted/split	0.45	61	134
Wings	0.32	373	1,164
Fillets w/skin, ribs	. 32 - . 45	564	1,320
Fillets w/skin, no ribs	. 27 - . 38	694	2,430
Fillets w/ribs, no skin	. 25 - . 35	130	497
Fillets, no skin, ribs	. $21-.25$	25,685	143,195
Fillets, deep-skin	0.13	22,872	174,039
Surimi	. 15 - . 18	92,303	573,623
Minced	. 22 - . 50	12,771	30,866
Mantles	. $75-.85$	0.2	0.2
Other retained		31	30
Total		341,695	1,222,490
"Ancillary" products			
Roe	0.08	8,718	1,556
Pectoral girdle	0.05	18	0
Heads	. $15-.20$	73	0
Cheeks	0.05	8	0
Chins	0.05	72	0
Belly	. $01-.10$	21	0
Fish oil	na	1,134	0
Milt	nа	266	0
Stomachs	na	389	0
Total		10,701	1,556
"Industrial" products			
Bait (primary)	1.0	326	326
Fish meal (ancillary)	. 17 - . 22	22,839	0
(primary)	. $17-.22$	2,816	16,486
Total		25,980	16,812
At-sea			
Total, all product forms		378,375	1,240,858

Table 62 (continued). - Reported processed product for all groundfish processed by shoreside plants in the GOA and BSAI in 1994 (t).

Product Form	PRR	Product Wt.	Round Wt.
"Primary" products			
Whole fish	1.0	7,040	7,040
Bled only	0.98	828	835
Gutted only	. $80-.90$	131	155
Gutted only	. $80-.90$	100	117
H\&G w/roe	. $55-.80$	133	162
H\&G western	. $50-.78$	3,069	5,372
H\&G eastern	. 32 - . 65	14,091	22,765
H\&G tail removed	. 44 - . 62	184	304
Kirimi	- 0.48	268	543
Salted/split	0.45	4,300	9,477
Wings	0.32	2	6
Fillets w/skin, ribs	. 32 -. 45	116	332
Fillets w/skin, no ribs	. $27-.38$	148	508
Fillets, no skin, ribs	. 21 - . 25	137	557
Fillets w/ribs, no skin	. $25-.35$	226	842
Fillets, no skin, ribs	. 21 - . 25	24,273	126,699
Fillets, deep-skin	0.13	489	3,762
Surimi	. $15-.18$	89,226	488,657
Minced	. 22 - . 50	2,590	1,171
Mantles	. $75-.85$	2	2
Butterfly, no backbone	0.43	,	1
Other retained		0.01	0
Total		147,352	669,308
"Ancillary" products			
Roe	0.08	5,160	219
Pectoral girdle	- 0.05	22	0
Heads	. $15-.20$	107	0
Chins	0.05	3	0
Belly	. $01-.10$	28	1,106
Fish oil	па	8,021	0
Stomachs	na	10	0
Milt	na	408	0
Bones	na	4,061	0
Total		17,820	1,325
"Industrial" products			
Bait (primary)	1.0	932	932
Fish meal (ancillary)	. 17 - . 22	32,732	0
(primary)	. $17-.22$	939	5,522
Total		34,603	6,454
Shoreside			
Total, all product forms		199,775	677,087
AGGREGATE TOTAL (At-sea and Shoreside)		578,150	1,917,945

Limits on Production

Technical_Limitations

Changes in industry standards of retention and utilization of catch involve adjustment costs. Historically some groundfish discards in the BSAI and GOA fisheries have been required by regulations, economic considerations (e.g., lack of markets or lower values than the primary target species, etc.), or other discards that may have occurred for "technical" reasons.

Existing mechanical processing technology imposes both effective and absolute limits on the size (and to perhaps a lesser extent, species) of fish which can be efficiently converted into a marketable product form (excluding, of course, meal reduction). From the standpoint of assessing changes in processed product form or recovery rates, existing production capacity and technology can be regarded as fixed, in the short-run, and only marginally flexible in the intermediate-run. While each operation in the BSAI and GOA groundfish fisheries is unique in terms of configuration, capacity, and technology, all are constrained by similar technological and market limitations on what can be produced from the raw catch. These limitations may be useful indicators of the potential for change in catch retention and utilization patterns.

Size frequencies and species composition in the BSAI and GOA fisheries vary significantly. Some of the most pronounced year-to-year variability can be explained by the presence of an exceptionally strong (or weak) cohort, which can be seen to move through the fishery in successive years. So, for example, when an unusually abundant year class first recruits into a fishery, the proportion of "small fish" to total catch of a given species may increase dramatically. As this year class grows and matures, it represents a greater share of each year's total catch of that species. Over time, the proportion of "small fish" to total landings falls. Therefore, in any given year, for any given species, the range of size of fish, and the proportional composition of each size class to the total may be different. Because size and maturity are important aspects of some product forms for some species, these biologicallyrelated externalities can directly affect catch utilization, product mix, and value,

An example of how the population dynamics of a groundfish stock can affect catch composition, and thus utilization, is presented below. While the example selected focuses on
the BSAI mid-water pollock fishery, a similar dynamic would apply to most other directed groundfish fisheries in this region.

In the case of the BSAI mid-water pollock fishery, utilizing a 5 -year mean from 1989 through 1993, pollock ranging in size from 11 cm (about 12 gm) to over 83 cm (more than $4,000 \mathrm{gm}$) are reported in the catch. For the same period, approximately 25% of the catch was equal to or less than 40 cm (approximately 465 gm) in size, approximately 25% was between 41 cm and 45 cm (up to 650 gm), 25% was between 46 cm and 49 cm (up to 830 gm), and roughly the final 25% was greater than 50 cm (up to $3,800 \mathrm{gm}$),

Industry sources and others knowledgeable about this sector of the fish processing industry, report that, at the present time, the at-sea processing sector fillet and surimi production relies heavily on Baader processing technology (e.g., Baader 182, 190, and 212 filleting machines). The shorebased operators rely upon the same technology, although additional Toyo processing capacity exists in this sector.

Technical information, provided by Baader Fish Processing Machinery, suggests that each of these filleting machines have absolute limits on the size of pollock which can be processed. For the Baader 190, the limits range from 33 to 66 cm . For the Baader 212, which also allows the extraction of roe, the bounds are 35 to 55 cm . The 182 Baader machine, in its standard configuration, can process pollock in the range of 27 to 42 cm ; although in its more commonly used alternative configuration, with mechanical modifications, the machine can process fish of 35 cm to 52 cm .

These mechanical limits define the boundaries of possible production for specific product forms without modification to the machines. Utilizing these technical limits, in combination with historical size composition data for the BSAI mid-water pollock fishery, it appears that, on average, approximately 1.75% of the catch (in numbers of fish) will be below the minimum size for mechanical processing for operations employing the factory configured Baader 182 machines. With the more common modification to utilize 35 to 55 cm fish, 7.4% of the pollock catch would be too small for the Baader 182. Just over 5\% of total pollock catch will be too small to process using Baader 190s and 7.4% will be below the lower size limit for use of the Baader 212 machine. Reportedly, Toyo machines will process pollock as small as 27 cm , equivalent to the lower bound of the standard Baader 182 configuration.

Technology, currently available to the industry, does not provide a means to utilize a fish at the lower end of the size range taken in the pelagic trawl fishery for anything but meal reduction purposes. ${ }^{6}$ One operator reported that, "you put the really small fish into the system and they just fall through the grates 'in the machines. "

At the upper-limits, using the standard factory configuration of the Baader 182 would mean that, in the pelagic trawl pollock fishery, nearly 59.5% of the total pollock catch would be too large for these machines. In the modified configuration which accommodates fish as large as 52 cm , just over 10% of the pollock catch would be too large for the machines. For operators with Baader 190 machines, less than 0.25% of the catch could not be processed by machine. The Baader 212, with an upper bound of 55 cm , could handle all but about 4.4% of the pollock caught. Toyo machines reportedly have an upper-bound limit of $2,000 \mathrm{gm}$ or about 66 cm . This is equivalent to the Baader 196 limit. Very large fish, which cannot be mechanically processed, could perhaps be processed by hand. ${ }^{7}$

Market Limitations

Beyond the technological limits of the existing physical plant in these fisheries, there are limits which dictate how (or if) a particular processor will utilize delivered catch. In a sense, the technological limits describe what "can" be processed, while markets define what "should" be processed, at least in the short-run, from the perspective of the plant operator.

If a profit-maximizing firm expends scarce productive resources (e.g., labor, capital), to produce a product for which there is no market, that firm will not remain in business for long. It is important, therefore, to consider what "market" limitations (in addition to the

[^3]"technological limitation") may confront the domestic groundfish industry in the short-run.

Continuing to use the BSAL mid-water pollock fishery as an example, industry sources suggest that current markets dictate the following limits. For pollock fillet production the "minimum" size fish that can be used to produce a marketable product is about 350 gm round weight (or roughly 36 cm). For surimi production, the lower limit is about 300 gm (approximately 34 $\mathrm{cm})$. Pollock H\&G requires a fish of no less than 350 gm . Another industry source reported that, as a rule, his operation did not buy pollock of less than 450 gm (approximately 40 cm), although fish of as small as 400 gm (about 38 cm) would be the lower limit for surimi production. Deep-skin blocks and individually quick frozen fillets required fish of 600 gm (roughly 44 cm). Small fish under the identified minimums could not be utilized to produce a "saleable" product (other than meal) in existing markets.

These market limits, when compared to average size composition data for the BSAI mid-water pollock fishery, cited above, suggest that the range of useable pollock is somewhat narrower than the range dictated by technology, all else equal. Operations producing fillets or H\&G product may not be able to market "primary" product from the smallest 9.4% of the total catch, that is, fish less than 36 cm in length. Surimi producers may not be able to produce marketable primary product from as much as 6% of the pollock catch. Obviously, for those products and producers which "require" larger fish, even more of the average pollock production would be unsuited to primary product production, (e.g., deep-skin block).

While the BSAI mid-water trawl fishery catch is consistently made up of 99% pollock, the catch does contain other species. Pacific cod with small amounts of flatfish make up most of the catch balance. Species other than that "targeted" by an operator potentially present significant additional problems, both technical and market-related. For example, a processing facility configured and equipped to process, say, pollock surimi would be ill-equipped to convert flatfish into a marketable product form. Likewise, that same surimi processor might discover that handling, packaging, and marketing an unfamiliar product form, that is, flatfish fillets, is unprofitable.

Product Recovery Rates (PRRs)

Historically, NMFS found it necessary, for management, monitoring, and enforcement purposes, to define, in formal regulation, standard product types and associated PRRs for the groundfish fisheries of the BSAI and GOA. Used to estimate round weight equivalents of groundfish catches, standardized PRRs assume a fixed proportion of the amount of primary processed product to be derived during processing. Additional products obtained from the same fish are classified as ancillary products.

Beginning in 1990 and continuing through 1991, NMFS monitored groundfish catches in the Bering Sea and Gulf fisheries solely on the basis of standard PRRs, by applying the appropriate "standard" recovery rate to the amount of processed product reported by industry through the Weekly Production Reports. In 1992, NMFS began the monitoring of deliveries of groundfish to onshore processors on the basis of landed weight, thus avoiding for the most part the use of PRRs for this sector of the industry. However, catches, of groundfish in the offshore processing sector continued to be monitored on the basis of product weights and standard PRRs.

An important exception to this rule was made in for the pollock fishery. In 1992, NMFS utilized a "blend" system for at-sea pollock catches which compared observer estimates of total catch with that reported by the operator in the Weekly Production Report. If the two sources were within 10% of one another, the Weekly Production Report was employed. If they varied by more than 10%) the observer estimate was used. The single exception to this rule came in the case where the Weekly Production Report was more than 20% higher than the observer estimate, in which case the Weekly Production Reportwas accepted. While the "blend" procedure reduced the relative importance of standardized PRRs, they continue to be employed, in combination with the Weekly Production Report data, in this estimation method. The following year, 1993, the "blend" estimation procedure was adopted for all at-sea groundfish processors. The "decision threshold" which dictated the use of observer information or the Weekly Production Report was lowered to 5\%. In 1994, the "blend" model was again modified, such that, in the pollock fishery only, the threshold for selecting the Weekly Production Report estimates when the observer data are significantly lower, was changed from 20% to 30%. For all other species, the threshold remained at 20%.

Consistent estimation of total catch remains a critical consideration in assuring optimum utilization of the groundfish resource, over tune. While direct use of PRRs has diminished in importance for catch monitoring, accurate determination of round weight equivalent catch estimates, derived by backcasting from processed product utilizing PRRS, continues to be a necessary means of in-season catch monitoring and enforcement. In this way the fullest possible harvest may be obtained, while minimizing the risk of overfishing these valuable resources.

Standardized PRRs are also used to estimate the round weight equivalent of retained species for purposes of assigning vessels to specific fisheries for monitoring bycatch allowances of prohibited species (PSC), or monitoring compliance with fishery specific standards under Vessel Incentive Programs to reduce PSC rates.

At present, NMFS has established a total of 30 standard product types for these fisheries. With each standard product type, for each listed species, there is associated a single standard PRR (with the exception of pollock surimi for which two PRRs are prescribed: one for the Aseason and one for the B-season). The official PRRs are listed in Table 63.

Table 63. Species categories, product codes and descriptions, and standard product recovery rates for groundfish species referenced in 50 CFR $672.20(a)(1)$ and/or 50 CFR $675,20(a)(1)$.

	FMP SPECIES		PRODUCT CODE											
			1	2	3	4	6	7	8	10	11	12	13	14
			Whole	WHOLE	BLED	GUTTED	HEADED	HEADED	HEADED	HEADED	KIRIMI	SALTED	WINGS	ROE
			FOOD	BAIT			\& GUTTED	\& GUTTED	\& GUTTED	\& GUTTED		\& SPLIT		
	.	SPECIES	FISH	FISH	.		WITH	WESTERN	EASTERN	W/O TAIL				
		CODE					ROE	CUT	CUT		-			.
	Pacific cod	110	1.00	1.00	0.98	0.85	0.63	0.57	0.47	0.44	0.45	...	0.05
	Arrowtooth flounder	121	1.00	1.00	0.98	0.90	0.80	0.72	0.65	0.62	0.48	\cdots	...	0.08
	Rockfish 1/		1.00	1.00	0.98	0.88	0.60	0.50	\ldots	\ldots	..	
	Sculpins	. 160	1.00	1.00	0.98	0.87	..	0.50	0.40	\ldots	\ldots	\ldots	
	Atka mackerel	193	1.00	1.00	0.98	0.87	0.67	0.64	0.61	\ldots	\ldots	\ldots
	Pollock	270	1.00	100	098	0.80	0.70	0.65	0.56	0.50	\ldots	\ldots	\ldots	0.04
	Smelts	510	1.00	1.00	0.98	0.82	\ldots	0.71	\ldots.	\ldots
	Eulachon	511	1.00	1.00	0.98	0.82	\ldots.	0.71	\ldots.	\ldots	\ldots	\ldots	\ldots	\ldots
	Capelin	516	1.00	1.00	0.98	0.89	\ldots	0.78	\ldots	...	\ldots	...	\ldots
	Sharks	689	1.00	1.00	0.98	0.83	.	0.72	...	\ldots	\ldots
	Skates	700	1.00	1.00	0.98	0.90	\ldots	0.32	\ldots.	...	\ldots	0.32	\ldots
	Sablefish	710	1.00	1.00	0.98	0.89	\cdots.	0.68	0.63	0.50	\ldots	\ldots	\ldots
$\stackrel{\rightharpoonup}{\circ}$	Octopus	'870	1.00	1.00	0.98	0.69	.	.	. 63	\ldots	\ldots	\ldots	\ldots
	Species categories only at 50 CFR 672.20(a)										-			
	Deep water flatfish	118	1.00	1.00	0.98	0.90	0.80	0.72	0.65	0.62	0.48	\ldots	0.08
	Flathead sole	122	1.00	1.00	0.98	0.90	0.80	0.72	0.65	0.62	0.48	\ldots	\ldots	0.08
	Rex sole	125	1.00	1.00	0.98	0.90	0.80	0.72	0.65	0.62	0.48	\ldots	\ldots	0.08
	Shallow water flatfish	119	1.00	1.00	0.98	0.90	0.80	0.72	0.65	0.62	0.48	0.08
	Thornyhead rockfish	143	1.00	1.00	0.98	0.88	0.55	0.60	0.50	\cdots	.	\cdots
	Species categories only at 50 CFR 675.20(a)					-								
	Other flatfish	120	1.00	1.00	0.98	0.90	0.80	0.72	0.65	0.62	0.48	\ldots	\ldots	0.08
	Rock sole	123	1.00	1.00	0.98	0.90	0.80	0.72	0.65	0.62	0.48	\cdots	$\cdots \cdot$	0.08
	Yellowfin sole	127	1.00	1.00	0.98	0.90	0.80	0.72	0.65	0.62	0.48	\ldots	0.08
	Greenland turbot	134	1.00	1.00	0.98	0.90	0.80	0.72	0.65	0.62	0.48	\ldots	0.08
	Squid	875	1.00	-1.00	0.98	0.69	\ldots	\cdots	\cdots	-	\cdots	\ldots	9.

1/ Rockfish means all species of Sebastes and Sebastolobus

	Table 63. (continued).									PRODUCT CODE					
	SPECIES CODE		15	16	17	18	19	20	21	22	23	24	30	31	32
			PECTORAL GIRDLE	HEADS	CHEEKS	CHINS	BELLY	FILLETS: WITH SKIN $\&$ RIBS	FILLETS: SKIN ON NO RIRS	FILLETS: WITH RIBS NO SKIN	FILLETS: SKINLESS, boneless	FILLETS: DEEP SKIN	SURIMI	mince	MEAL
													,		
	Pacific cod	110	0.05	0.05	0.01	0.45	0.35	0.25	0.25	0.15	0.50	0.17
	Arrowtooth flounder	121	\ldots	0.32	0.27	0.27	0.22	0.17
	Rockfish		\ldots	0.15	0.05	0.05	0.10	0.40	0.30	0.33	0.25	0.17
	Sculpins	160	`....	\ldots.	0.17
	Alka mackerel	193	\ldots	\ldots	\ldots	\cdots	\ldots	\ldots	\ldots	0.15	\ldots	0.17
	Pollock	270	0.15	0.35	0.30	0.30	0.21	0.16	$0.161 /$	0.22	0.17
												.	0.1721		
	Smelts	510	\ldots	\ldots	0.38	\ldots	\ldots	\ldots	\ldots	0.22
	Eulachon	511	\ldots	0.38	\ldots	...	\ldots	0.22
	Capelin	516	\ldots	\ldots	\ldots	\ldots	0.22
	Sharks	689	\ldots	\ldots	0.30	0.30	0.25	0.17
	Skates	700	-...	\ldots	0.17
	Sablefish	710	0.05	0.35	0.30	0.30	0.25	\ldots	0.22
$\stackrel{\rightharpoonup}{6}$	Octopus	870	\ldots	\ldots	\ldots.	\ldots	0.17
	I/ Standard pollock surimi rate during January through June 2/ Standard pollock surimi rate during July through December														
	Species categories only at 50 CFR 672.20(a)														
	Deep water flatish	118	\ldots	0.32	0.27	0.27	0.22	\ldots	0.17
	Flathead sole	122	0.32	0.27	0.27	0.22	\ldots	\ldots	0.17
	Rex sole	125	\ldots	...	\ldots	0.32	0.27	0.27	0.22	0.17
	Shallow water flatfish	- 119	\cdots	\ldots	\ldots	0.32	0.27	0.27	0.22 -	\ldots	0.17
	Thomyhead rockfish	143	0.20	0.05	0.05	0.05	0.40	0.30	0.35	0.25	0.17
	Species categories only at 50 CFR 675.20(a)														
	Other flatish	120	\ldots	\ldots	\ldots	\ldots	0.32	0.27	0.27	0.22	\ldots	0.17
	Rock sole	123	\ldots	0.32	0.27	0.27	0.22	0.17
	Yellowfin sole	127	\ldots	0.32	0.27	0.27	0.22	0.18	0.17
	Greenland turbot	134	\ldots	\ldots	0.32	0.27	0.27	0.22	0.17
	Squid	875	\ldots	\ldots	\cdots	\ldots	\cdots	\ldots	\ldots	\ldots	\ldots	\ldots	0.17

Table 63. (continued).
PRODUCT CODE

Product Recovery Rates Variability in the Field

The foregoing discussion suggests the importance of establishing accurate "standard" PRRs, by species and product form. A standard PRR set too high has the potential to result in the overharvesting of the resource, while if set too low could inappropriately restrict catches and impose unjustified costs on users.

However, because the groundfish resources in the North Pacific and Bering Sea are so diverse, numerous product forms have emerged to take advantage of specific attributes of the catch and to meet particular market needs and demands. Operationally, PRRs are highly variable and may differ from operation to operation, or period to period, depending on such factors as product mix, fish size and condition, market demand, and species/gender composition.

Some PRRs, by definition, are very low (e.g., heads, cheeks, and milt). Others may be variable over the course of a fishing season or in response to biological or market conditions (e.g., roe or surimi). The actual rate of recovery attained in an operation may be linked to a number of competing considerations. For example, the "maximum" PRR attainable is 1.0 (i.e., a "whole" fish). This product form may not, however, yield the highest product value.

Even within a particular product type, there may be a direct trade-off between recovery rate and value. Consider the case of pollock surimi. A processor which has the capability to produce a range of grades of surimi will find that the recovery rate for very high grade product (e.g., SA grade), may be somewhat lower than that for a lower grade product (e.g., A or B grade). However, the value of the higher quality product may more than off-set the reduction in output. In this case, reliance on comparative PRRs to judge the relative efficiency of an operation may be inappropriate. As suggested, the physical measure of output, in the absence of information on relative economic value, ignores the inherent trade-off between quantity and quality, and may lead to inefficient decisions.

The groundfish biomass in the BSAI and GOA is relatively abundant and diverse. This resource base has traditionally provided a wide array of production opportunities and product options. It is reasonable to assume that new uses and product forms will continue to emerge in response to market opportunities and changing consumer preferences. As new markets, innovative uses of groundfish, or additional products develop, managers will be challenged to respond with programs which simultaneously facilitate development opportunities, while ensuring the sustainability of the resource base.

Markets and Estimated Product Value

Groundfish Exports

The majority of the groundfish harvested in the United States EEZ off Alaska finds its way into export markets (Kinoshita et al., 1994). Many of the principal groundfish products are exported after undergoing only primary processing in the United States and are reprocessed into final products, by secondary processors, outside the United States.

Groundfish from the U.S. EEZ off Alaska are exported to many countries. The principal export markets include Japan, the Republic of Korea, Canada, the People's Republic of China, and the European community ${ }^{8}$. Numerous other countries also purchase Alaska groundfish products, but in much smaller quantities.

In 1990, exports of groundfish products, deriving from fish harvested in the U.S. EEZ off Alaska, totaled more than $432,700 \mathrm{t}$, with an estimated value of $\$ 775,180,000$. In 1994 , the total quantity of these exports had risen only slightly, to $433,959 \mathrm{t}$, but with an estimated value of $\$ 870,275,000$.

The following tables summarizes 1) the reported quantities of these groundfish products, by primary product form and species category, exported to each of the principal markets, for 1990 through 1994, and 2) their associated value. These data are drawn from United States Department of Commerce, Bureau of the Census sources for customs districts in Alaska and Washington. To the maximum extent practicable, only products deriving from groundfish harvested off Alaska are included in the reported export quantities.

The world seafood market was fundamentally changed with the. wide-spread implementation of Extended Jurisdiction Zones in the early-to-mid 1970s (Queirolo, Johnston and Zhang, 1995). The U.S. fishing industry, and particularly those of the. Pacific Northwest and Alaska, was among the principal beneficiaries of much of this change, expanding into new markets and supplying new product forms.

[^4]In an effort to respond to these institutional changes, official statistical data on U.S. export product categories have changed over time, although there often is a significant lag in this response. These changes have been made ostensibly to provide greater detail by species and product form. However, as a result, not all products appear as distinct export categoriesin each year, although the product may have been present in substantial quantities. For example, "surimi" was not a separate product category until 1992. Prior to that time, export quantities of surimi may have been recorded under product categories, "fish, meat/minced", "fish, minced", or "fish balls, cake, pudding". Despite these difficulties, these export data demonstrate the wide variety of product forms which derive from the utilization of groundfish harvested in the U.S. EEZ off Alaska. They also demonstrate the important contribution these groundfish resources make to U.S. seafood export trade, and by extension to the economic well-being of the region, and the world's supply of seafood products.

Groundfish exports from fisheries in the U.S. EEZ off Alaska varied between 1990 and 1994, both in terms of specific product categories and total quantity. As the data in Table 64 illustrate, total 1990 groundfish exports were $432,744 \mathrm{t}$ for these fisheries. This total increased by 8.62% in 1991, to $470,061 \mathrm{t}$, and by 2.71%, to $482,807 \mathrm{t}$, in 1992. In both 1993 and 1994, total groundfish exports, attributable to the U.S. fisheries in the EEZ off Alaska, actually declined, first by 5.62% in 1993, then by 7.18% in 1994 .

An indication of the increasing product value associated with these groundfish exports is revealed in Table 65. For example, while the quantity of total exports of these products grew by 8.62% from 1990 to 1991 , the total value increased by 40%. A portion of this increase can be attributed to a general increase in the world price for groundfish products. In particular, the price of Alaska-origin exports in categories "roe" (up on average $\$ 1 / 1 \mathrm{~b}$., from $\$ 2.79$ to $\$ 3.79$), and the "other products" category (primarily surimi, nearly doubling from $\$.76 / \mathrm{lb}$. to $\$ 1.33 / \mathrm{lb}$.) were sharply higher. ${ }^{9}$ Additional factors influencing this sharp increase in total export value may have included growth in U.S. processing capacity and capability to produce outputs with higher "value-added" characteristics, as well as the changing structural relationship in seafood trade between, in particular, the United States and Japan, its principal
${ }^{9}$ Source: R. Kinoshita, A. Greig, and J. Terry, Economic status of the groundfish fisheries off Alaska, 1994. U.S. Dep. Commer., NOAA Tech Memo. NMFS-AFSC-00, xx P. (In prep).
market (see, Sproul and Queirolo, 1994).

Total export value for this region increased again, by 3.36%, between 1991 and 1992. In 1993, however, the estimated export value moved sharply lower, declining in aggregate by 24%, The principal source of this decline was attributable to a 36.6% drop in surimi prices (from an average $\$ 1.45 / \mathrm{lb}$. to $\$.92 / \mathrm{lb}$.) in that year ${ }^{10}$ The value of exports rose only slightly, by approximately
2.5%, in 1994.
${ }^{10}$ Currency exchange rates and world supply of "substitute" products, including among others meat, poultry, and seafood, influence international trade, and thus U.S. exports, in a major way. Over the period of interest, currency, exchange rates have changed rapidly, especially between the U.S. dollar and the Japanese yen. Because Japan is the largest single market for groundfish products deriving from the fisheries off Alaska, the influence has be magnified with respect to this region's export statistics.

Table 64. - Principal Alaska groundfish product exports, 1990-94 (in metric tons).

Product	1990	1991	1992	1993	1994
	"Whole or dressed"				
Flatfish					
Canada	168	123	59	113	222
Europe	25	1,059	558	67	199
Japan	18,199	50,087	23,3972	1,9833	9,282
P.R. China	.	2,268	1,571	1,353	14,723
Rep. Korea	4,861	15,437	20,809	30,127	20,932
Other	2	2,551	5,680	6,832	1,960
Cod				,	
Canada	298	976	981	511	1,035
Europe	23,966	30,700	16,689	4,086	2,346
Japan	33,307	32,221	27,415	18,559	32,876
P.R. China	.		. .	31	249
Rep. Korea	15,225	16,479	11,580	9,866	2,402
Other	45	11	29	112	46
Pollock					
Europe	330	192	193	6	7
Japan	211	26	182	192	144
P.R. China		16	.	.	
Rep. Korea	772		689	754	1,149
Other	165	50	.	20	58
Mackerel (Atka)					
Canada	35	53	74	39	31
Japan	8,540	1,741	2,751	8,891	12,233
Rep. Korea	1,269	20	2,751	10,212	5,041
Sablefish					
Europe	197	15	137	19	-
Japan	14,912	17,508	14,273	19,805	14,945
P.R. China	:	- .	.	.	16
Rep. Korea	1,456	424	291	.	20
Other	15	34	127	182	221.

Table 64. - Continued.

Product	1990	1991	1992	1993	1994
Other, nspf					
Canada	681	860	746	988	1,743
Europe	16,628	4,803	611	1,272	338
Japan	45,218	26,495	64,135	45,227	27,120
P.R. China		.	20	68	280
Rep. Korea	3,155	9,803	19,923	9,495	5,289
Other	580	135	781	313	280
		"Roe products"			
Pollock roe					
Europe	.	83	4		.
Japan		15,041	15,847	10,490	7.975
P.R. China			41	17	
Rep. Korea		2,947	1,659	307	937
Other				2	

Fish roe, other, nspf

Canada	4	18	116	51	59
Europe	114	28	183	88	161
Japan	13,696	3,920	3,104	3,819	2,597
Rep. Korea	2,767	524	178	41	831
Other	.	11	.	1	42

"Fillets"

Cod

Canada	202	247	183	327	545
Europe	369	399	516	85	197
Japan	312	161	186	338	524
Rep. Korea	260	172	551	14	92
Other	18	26		6	35

Pollock

Canada	.	440	412	41	16
Europe	.	5,221	583	1,390	3,091
Japan	.	147	1,080	229	1,037
P.R. China	.	34	.	.	.
Rep. Korea	.	524	740	231	158
Other	.	1	14	260	41

Table 64. - Continued.

Product	1990	1991	1992	1993	1994
Other, nspf					
Canada	1,609	1,164	1,653	2,009	1,463
Europe	4,714	2,912	1,593	236	342
Japan	200	985	235	1,783	471
P.R. China				19	10
Rep. Korea	132	121			4
Other	32	103	90	34	48
"Other products"					
Fish, meat/minced					
Canada	744		.		
Europe	2,685	.	.	.	
Japan	96,945	.	.	.	
Rep. Korea	14,548	.	.	.	
Other	769
Surimi					
Canada	.	.	101	68	61
Europe	'		802	695	1,195
Japan	.	.	94,379	120,178	119,635
P.R. China	.	.	-	335	161
Rep. Korea			9,586	23,063	12,909
Other	.	.	277	3,739	5,480
Fish, minced					
Canada	.	.	6	359	39
Europe	.	3,566	268	14	218
Japan	.	61,233	3,059	2,796	1,238
Rep. Korea	.	9,252	1,614	.	178
Other	.	379	43	90	
Fish, meat					
Canada	.	1,001	659	537	690
Europe	.	1,578	728	490	366
Japan		18,467	5,486	3,006	9,923
P.R. China				113	
Rep. Korea		3,990	905	1,143	3,654
Other			155	1,182	1,059

Table 64. - Continued:

Product	1990	1991	1992	1993	1994
Fish balls, cake, pudding					
Canada	1	1	13	22	
Europe	44	58	49	.	
Japan	1,375	11,890	19,893	12	64
P.R. China	40	.	23	21	.
Rep. Korea	3,438	4,468	3,608	574	100
Other	130	250	300	20	9

Fish sticks, minced

Canada	2,202	2,729	3,043	3,287	3,530
Europe	503	.	0	100	.
Japan	23,798	7,182	4,237	6,580	2,854
P.R. China	18	.	.	.	0
Rep. Korea	5,095	4,219	365	160	23
Other	750	155	678	581	586

Fish meal for human consumption
Canada . 10

10
Europe
Japan
P.R. China

2,084
3,348
2,487
2,370
4,273
Rep. Korea
368
Other
5,887
251
15
80.

Cod, salted, dried

Canada	27	1	60	72	85
Europe	4,848	6,796	669	570	933
Japan	315	.	.	35	.
Rep. Korea	133	.	.	.	17
Other	26	.	32	.	.

Fish liver oils
Canada
Rep. Korea
5

196
Fish oils

Canada	80	990	4,896	4,237	5,944
Japan	10	290	270	1,080	.
Other	31	54	50	260	409

Table 64. - Continued.

Product	1990	1991	1992	1993	1994
Fish meal					
Canada	3,307	6,582	4,621	1,381	712
Europe	2		73	.	.
Japan	11,224	27,778	22,156	17,279	12,492
P.R. China	548	1,131	2,690	4,857	3,482
Rep. Korea	697	2,890	1,501	1,184	1,701
Other	35,550	39,685	47,507	40,154	33,147

[^5]Table 65. - Value of principal Alaska groundfish product exports, 1990-94 (in \$1,000).

Product	1990	1991	1992	1993	1994
	"Whole or dressed"				
Flatish					
Canada	550	529	255	482	892
Europe	49	755	576	126	218
Japan	31,015	84,025	32,196	36,608	72,011
P.R. China		1,596	984	946	12,653
Rep. Korea	4,461	11,308	17,680	18,521	15,273
Other	8	2,366	4,716	5,773	1,996
Cod					
Canada	882	2,335	2,820	2,005	2,587
Europe	38,250	55,376	26,688	6,547.	4,923
Japan	60,356	66,042	50,864	33,971	62,812
P.R. China				14	132
Rep. Korea	16,380	20,614	13,949	11,950	5,335
Other	69	22	206	527	256
Pollock					
Europe	715	183	393	14	24
Japan	294	26	439	374	166
P.R. China		12			
Rep. Korea	1,057		462	560	875
Other	311	238		50	147
Mackerel (Atka)					
Canada	47	70	138	61	50
Japan	11,736	3,372	5,168	11,329	12,053
Rep. Korea	1,568	17	3,181	6,957	4,221
Sablefish					
Europe	340	17	431	43	
Japan	59,477	92,772	75,782	87,389	85,386
P.R. China					69
Rep. Korea	1,650	1,252	129	.	83
Other	66	171	694	1,058	1,626

Table 65. - Continued.

Product	1990	1991	1992	1993	1994
Other, nspf					
Canada	1,600	2,417	2,233	3,534	5,127
Europe	32,249	10,013	1,549	1,914	492
Japan Y	84,486	52,393	114,083	83,308	48,092
P.R. China	.	.	26	67	67
Rep. Korea	3,334	13,855	21,968.	8,827	3,959
Other	873	379	1,089	521	736
"Roe products"					
Pollock roe					
Europe	,	317	111	.	.
Japan		129,335	160,979	100,384	79,924
P.R. China	.	.	473	79	.
Rep. Korea		22,921	16,470	3,326	8,503,
Other		.	. .	4	.
Fish roe, other, nspf					
Canada	34	197	588	386	639
Europe	189	178	3,438	2,426	2,693
Japan	78,756	29,501	19,540	17,891	13,643
Rep. Korea	20,013	3,775	772	284	3,621
Other	.	90	.	9	117
		"Fillets"			
Cod					
Canada	625	888	588	1,318	1,455
Europe	984	837	1,190	108	226
Japan	818	416	627	1,632	1,331
Rep. Korea	535	382	750	34	213
Other	44	83	.	14	86
Pollock					-
Canada	.	1,413	395	95	37
Europe	.	9,882	1,208	2,537	5,377
Japan	.	420	2,049	1,135	2,663
P.R. China	.	89	- .	.	.
Rep. Korea	.	1,345	530	115	280
Other	-	5	57	157	143

Table 65. - Continued.

Product	1990	1991	1992	1993	1994
Other, nspf					
Canada	5,347	4,902	5,764	7,649	5,546
Europe	9,023	6,746	5,244	816	1,412
Japan	860	2,520	852	5,955	1,619
P.R. China	.			34	31
Rep. Korea	52	36	.	.	57
Other	59	134	421	202	139
"Other products"					
Fish, meat/minced					
Canada	2,179	.	-		
Europe	5,817	.	.		.
Japan	163,285	.			.
Rep. Korea	21,426	.			.
Other	1,415
Surimi					
Canada	.	.	273	159	147
Europe	.	.	1,438	1,362	2,747
Japan	.	.	328,560	253,102	273,742
P.R. China	.	.		610	324
Rep. Korea			29,285	36,265	25,577
Other			655	6,804	10,346

Fish, minced

Canada			24	688	63
Europe	.	9,736	803	17	291
Japan	.	190,227	7,415	3,585	2,064
Rep. Korea		28,207	4,296	.	380
Other	.	516	77	164	.

Fish, meat

Table 65. - Continued.

Product	1990	1991	1992	1993	1994
Fish balls, cake, pudding					
Canada	4	3	62	95	
Europe	164	195	130	.	
Japan	2,285	34,507	57,039	71	323
P.R. China	91	.	112	51	
Rep. Korea	5,637	16,881	5,896	635	187
Other	200	331	673	42	42
Fish sticks, minced					
Canada	7,240	8,689	9,930	9,766	10,351
Europe	1,538	.	.	162	
Japan	33,425	18,420	16,230	14,876	6,905
P.R. China	42
Rep. Korea	8,770	8,385	915	254	42
Other	1,818	340	995	445	725
Fish meal for human consumption					
Canada	.	13	.	-	- 3
Europe	.	.	27	.	.
Japan	1,133	3,139	1,555	1,282	3,135
P.R. China	.	.	.		263
Rep. Korea	.	279	.	48	.
Other	3,960	190	80	.	235
Cod, salted, dried					
Canada	61	4	129	144	263
Europe	14,380	22,319	3,086	1,979	2,782
Japan	308	.	.	191	.
Rep. Korea	- 139	.	.	\therefore	29
Other	60	-	72	.	.
Fish liver oils					
Canada	21	27	14	28	22
Rep. Korea	439	465	289	137	506
Fish oils					
Canada	40	543	1;805	1,730	2,367
Japan	27	117	308	240	.
Other	24	27	29	186	558

Table 65. - Continued.

Product	1990	1991	1992	1993	1994
Fish meal					
Canada	1,755	4,209	2,670	627	322
Europe	26	.	703	.	
Japan	4,738	12,212	10,013	8,598	5,555
P.R. China	177	559	1,822	2,077	1,164
Rep. Korea	442	3,871	837	951	588
Other	22,952	22,923	23,125	18,513	17,071

Sources: U.S. Dep. Commer., Bur. of the Census: database from Natl. Mar.
Fish: Serv., Fish. Stat. Div., Silver Spring, MD 20910: and Alaska Fish. Sci. Cent., 7600 Sand Point Way NE, BIN C15700, Seattle, WA 98115-0090.

All values are reported in "nominal" U.S. dollars.

Factors Influencing Trade

Several exogenous factors influence international seafood trade. Among the most significant are currency exchange rates and world supplies of fishery products. The large quantities of groundfish products exported by U.S. producers, especially from fisheries off Alaska, as well as the substantial quantities of fish products supplied by foreign producers (a significant amount of which is imported into U.S. markets) place the U.S. and foreign seafood suppliers in competition with one another in the world marketplace. International currency exchange rates play a very important role in determining the respective economic performance (i.e., market-share) of each by affecting relative prices.

International exchange rates, particularly between the U.S. dollar and the currencies of its major seafood trading partners, have been extremely volatile over the period 1990 to the present (Table 66). In 1990, for example, the U.S. dollar was relatively strong against the Japanese yen, with the dollar buying as many as 158.5 yen in April of that year. However, from that relative high point, the dollar has moved in an almost uninterrupted downward slide, reaching post-World War II historical low levels against the yen, in recent years. By the end of the first quarter of 1995 , the U.S. dollar would buy only 90.8 yen, a decline in purchasing power of almost 43%. Because Japan has traditionally been the principal market for fishery products from the United States (and particularly from Alaska and the Pacific Northwest), the yen-dollar volatility has been especially important. In general, the U.S. dollar's relative weakness against the yen has the effect of making U.S. exports, such as groundfish from the EEZ off Alaska, appear relatively "inexpensive" to Japanese purchasers.

Over the same period, however, the U.S. dollar actually strengthened against the currencies of other major seafood trading partners (and competitors). In January of 1990, for example, the U.S. dollar would buy 1.171 Canadian dollars. Over the next 5 years, the U.S. dollar strengthened relative to the Canadian currency until, in January of 1995, the U.S. dollar purchased 1.413 Canadian dollars, an increase of nearly 21%. Similarly, the relative value of the U.S. dollar and Republic of Korea won changed markedly over this period. In early 1990, the U.S. dollar bought 683.4 Korean won. By 1994, the dollar was trading at more than 800 won, up roughly 18% in relative value.

While the dollar moved cyclically down, then up, then back down over this period against the British pound, it ended at about the same level in the first quarter of 1995 as it had in January of 1990; 0.625 pounds per dollar and 0.606 pounds, respectively. The dollar's performance against the Norwegian kroner was very similar, moving from 6.54 kroners per dollar in January of 1990, principally downward through the early-1991, recovering through late-1991,
then moving lower through late-1992. During 1993 and 1994, the U.S. dollar was relatively strong. By the end of the first quarter of 1995; the kroner/dollar exchange rate was once again in the range seen in early 1990. Indeed, this general pattern is reflected in a number of other currency exchange rates from western Europe.

The effect of these relative exchange rate changes has been, 1) to make U.S. exports (including groundfish products) relatively more expensive in Canada and South Korea, 2) to make Canadian and Korean exports into the U.S. market relatively "less expensive", and 3) to make Canadian and Korean products more "price competitive" with U.S. products in the world seafood marketplace.

International exchange rate volatility introduces an important external factor of "uncertainty" into the decision-making process for domestic groundfish producers as they assess utilization, product mix, and marketing options and opportunities.

There is also uncertainty concerning future harvest quotas because of the condition of the resource base. These concerns are associated both with the condition of stocks for the target groundfish species themselves, as well as those of "prohibited bycatch species", such as Pacific halibut, king and Tanner crabs, Pacific salmon, and Pacific herring.

Uncertainty about access to harvestable groundfish resources in the EEZ off Alaska also surrounds the interaction of these fish stocks and marine mammals, especially those marine mammal species which are listed as "depleted" or "threatened" under the U.S. Marine Mammal Protection Act.

All of these exogenous factors, and perhaps others not yet apparent, will influence the pattern of development and continued growth of the U.S. groundfish industry harvesting, processing, and exporting product from the EEZ off Alaska. Historical trends may provide some indication of where this important industry has come from, and where it may be headed. Nonetheless, the natural volatility in the ecological, biological, and economic environments demand continued careful examination of this important natural resource of the United Stat\&.

Table 66. - International Currency Exchange Rates for Selected Countries, 1990-1995 *. (Expressed in national currency units per U. S. dollar).

Month	Japan (yen)	Canada (dollar)	Republic of Korea (won)	United Kingdom (pound)	Norway (kroner)
1990					
Jan.	145.1	1.171	683.4	. 606	6.54
Feb.	145.5	1.196	689.9	. 590	6.47
Mar.	153.1	1.180	697.8	. 615	6.59
Apr.	158.5	1.164	706.0	. 611	6.55
May	153.5	1.175	709.3	. 596	6.44
Jun.	153.8	1.173	715.3	. 585	6.47
Jul.	149.3	1.157	715.9	. 553	6.30
Aug.	147.4	1.144	715.5	. 527	6.08
Sep.	139.0	1.158	715.0	. 532	6.07
Oct.	129.7	1.160	715.0	. 514	5.92
Nov.	129.1	1.163	715.0	. 509	5.80
Dec.	133.6	1.160	715.8	. 519	5.86
1991					
Jan.	133.9	1.156	718.1	. 517	5.91
Feb.	130.5	1.155	721.6	. 509	5.77
Mar.	137.2	1.157	725.1	. 546	6.22
Apr.	134.1	1.153	725.5	. 571	6.62
May	138.0	1.150	725.1	. 579	6.68
Jun.	139.8	1.144	725.4	. 607	6.96
Jul.	138.0	1.149	729.0	. 607	6.98
Aug.	138.9	1.145	731.1	. 594	6.82
Sep.	134.6	1.137	739.7	. 580	6.64
Oct.	130.7	1.128	749.2	. 581	6.62
Nov.	129.7	1.130	753.1	. 563	6.38
Dec.	128.1	1.146	757.3	. 548	6.18
1992					
Jan.	125.1	1.156	762.7	. 552	6.20
Feb.	127.5	1.182	765.7	. 563	6.35
Mar.	132.7	1.193	771.1	. 589	6.52
Apr.	133.5	1.187	778.3	. 569	6.45
May	130.6	1.199	782.8	. 552	6.32
Jun.	126.8	1.196	789.1	. 540	6.16
Jul.	125.6	1.192	787.2	. 521	5.86
Aug.	126.3	1.191	789.2	. 516	5.72
Sep.	122.7	1.222	785.6	. 538	5.79
Oct.	121.0	1.245	783.6	. 603	6.04
Nov.	123.9	1.268	784.0	. 655	6.47
Dec.	124.0	1.273	788.6	. 644	6.68

Table 66. - (continued).

* 1995 first quarter only

Estimating the Opportunity Cost of Bycatch

As noted in the foregoing discussion, the ecological and biological impacts of groundfish discards in the GOA and BSAI groundfish fisheries, while difficult to quantify, may be minimal. Fish which are intercepted as unwanted bycatch by one fishery, and ultimately discarded, may, absent their loss as bycatch, have been harvested and utilized to produce a marketable product in another fishery. Their capture and subsequent disposal, therefore, may impose direct economic costs on segments of the industry which target the species.

If a series of simplifying assumptions are made, it is possible to estimate the approximate value of the foregone catch of fish taken as bycatch and discarded in BSAI and GOA groundfish fisheries. For purposes of the following analysis, it is assumed that the 1994 catch utilization and discard patterns in the BSAI and GOA groundfish fisheries are typical, and that prices and product mixes remain constant.; Further, it is assumed that bycatch mortality for discarded groundfish is 100%.

It must be acknowledged that not all groundfish discards represent foregone catches in alternative fisheries. Two categories where this is so can be immediately identified. First, at present some species (e.g., bearded eel pout) are not regarded as having economic value as retained catch. Therefore, the discard of these bycatch species cannot reasonably be considered to have imposed costs on other fisheries. Second, some groundfish species for which markets do exist, nonetheless, are not fully utilized by fishermen, e.g., arrowtooth flounder. Thus, if the Total Allowable Catch (TAC) of a species is not taken during the fishing year, bycatch discards of that species in one fishery can be regarded as surplus to the needs of any other fishery targeting that species. Therefore, such discards cannot be said to impose economic costs on the target fisheries for the discarded species. For all other species, however, it is reasonable to conclude that bycatch mortality does impose economic costs on target fisheries, and these costs should be recognized and accounted for, if possible.

One caveat must precede the derivation of these estimated losses. The economic value of bycatch discards can be thought of as having two components. The first is the opportunity cost of the bycatch mortality, measured, in this case, as the value of the products foregone in target fisheries which would have harvested and utilized the fish, had it not been taken as bycatch. The second component is the. value of the bycatch as a variable input to production
of the target species catch (and subsequent product output), in the intercepting fishery. That is, if Pacific cod, for example, is caught in the bottom pollock fishery and discarded as unwanted bycatch, the value of that discarded cod has two economic components. First, if the discarded cod would have been harvested and utilized in a cod target fishery, the value of the foregone cod in that use is its opportunity cost. ${ }^{11}$ In addition, however, if some cod bycatch is unavoidable in order to catch pollock, then the cod used as bycatch also has an economic value as an input in the harvest and utilization of pollock. It should be noted that these economic value components are not additive.

The value of bycatch discards as a variable input to production may be larger or smaller than the estimated opportunity cost derived below, depending upon the species discarded, the target fisheries in question, and the respective market values of the outputs produced and foregone. It is not possible at this time to estimate the value of the bycatch discard as an input to production for the BSAI and GOA groundfish fisheries. It is possible, however, by employing a series of simplifying assumptions, to make a crude estimate of the opportunity cost of the groundfish discards in these fisheries.

By utilizing 1994 catch, production, and product price data, an estimate was made of the first wholesale value (for a round weight equivalent ton), weighted by product form and mix, for

[^6]each groundfish species, with an allocated TAC for which that TAC was binding. ${ }^{12}$ These round weight equivalent wholesale values were then applied to the estimated discards, by species, by target fishery, under the assumption that, absent the bycatch loss, an equal quantity of catch of the discarded species would have accrued to other fisheries targeting and retaining that species. That is, if a ton of sablefish was-caught and discarded, for example, in the GOA "deepwater flatfish" fishery, by assumption, the opportunity cost of that ton of discarded sablefish would be the weighted product value per ton of retained sablefish catch in the GOA target sablefish fishery. All groundfish discards, by species, for each directed fishery were treated in the same way. They were then summed across species to yield the total estimated value of the foregone groundfish production attributable to that target fishery. These estimates are reported, by target fishery, by BSAI and GOA management areas, in Tables 67 and 68, respectively.

To place these bycatch discard opportunity cost, estimates in context, a ratio was prepared for each target fishery, which portrays the relationship between the value of the total product of the target fishery, with the opportunity cost imposed by that fishery on other target fisheries, as a result of bycatch discards. These ratios are also presented in Tables 67 and 68 for the respective management areas.. They may be interpreted, subject to the limitations of the estimation procedure cited above, as the value of output obtained per dollar of bycatch opportunity cost imposed. That is, say fishery A has a retained/discard value ratio of 5.5. This suggests that, for target fishery A, for each dollar of bycatch opportunity cost it imposes on other fisheries, target fishery A produces $\$ 5.50$ of product output value from its retained catch.

In 1994, there were six target groundfish fisheries in the BSAI management area for which the TAC was binding. There were five target groundfish fisheries in GOA which met this criterion. Since, by assumption, opportunity costs attributable to bycatch discards can only accrue if a species TAC is attained (and thus no unutilized surplus quantity of that species is available to the fishery), these eleven target fisheries are the only ones for which an

[^7]opportunity cost estimate, and retained/discard value ratio can be made. ${ }^{13}$

In 1994, all BSAI groundfish fisheries taken together, discarded $162,161 \mathrm{mt}$ of allocated groundfish species for which the TAC was binding (hereafter referred to as AGFS). The opportunity cost of the AGFS discards exceeded $\$ 91,848,000$. Total retained catch of all groundfish species in these fisheries taken as a whole was just over 1,699,500 t. The aggregate retained value of this catch exceeded $\$ 925,229,800$. Thus, the Retained/Discard Value Ratio, weighted by fishery across all BSAI groundfish fisheries, was 10.1. That is, for each dollar of bycatch opportunity cost imposed, $\$ 10.10$ of output was produced from retained catch. Individual rates varied from a high of 29.2 in the pollock target fishery, to a low of 2.4 in the "other" groundfish target fishery.

In the GOA groundfish fisheries, taken as a whole, AGFS discards totaled $15,685.4 \mathrm{t}$. The opportunity cost of the AGFS discards exceeded $\$ 14,661,597$. Total retained catch of all groundfish species in these fisheries, taken as a whole, was just over 196,588 t. The aggregate retained value of this catch exceeded $\$ 235,825,000$. Thus, the Retained/Discard Value Ratio, weighted by fishery across all GOA groundfish fisheries, was 16.1. That is, for each dollar of bycatch opportunity cost imposed, $\$ 16.10$ of output was produced from retained catch. Individual rates varied from a high of 45.4 in the sablefish target fishery, to a low of 3.4 in the arrowtooth flounder target fishery.

The individual estimates presented in these tables should be regarded as only "preliminary." However, they do suggest that the value of the retained catch associated with current levels of bycatch discards consistently, exceeds the estimated attributable opportunity cost imposed on target groundfish fisheries. This should not be interpreted to suggest that current discard levels are somehow "optimal." Indeed, if bycatch discards could be reduced without adversely affecting total retained catch, the Retained/Discard Value Ratio would be even higher than estimated below. Because some bycatch is virtually unavoidable, given available fishing technology, it is not clear by how much bycatch discards can be reduced, without a

[^8]simultaneous reduction in the value of the retained catch. This trade-off between the foregone value of discards and the revenue stream deriving from retained catch is key to maximizing the benefits that flow from this resource.

Table 67. - Derivation of "Opportunity Cost" and Retained/Discard Value Ratios for BSAI Groundfish Fisheries
[Part A]
Discard Allocated Species or Species Groups

Target	Atka	Greenland	Pacific				Allocated
Eishery	mackerel	turbol	cod	Pollock	Sablefish	Rockfish	total
Atka mackerel	$9,596.6$	13.5	$2,210.1$	266.1	0.0	$4,585.5$	$16,671.7$
Yellowfin sole	0.0	5.8	$9,691.3$	$39,245.8$	0.0	0.0	$48,942.9$
Greenland turbot	0.8	369.0	4.1	21.1	47.2	23.3	465.4
Rock sole	0.0	8.8	$, 3,759.1$	$14,407.6$	0.4	1.1	$18,176.9$
Other flounder	3.8	221.9	611.0	$2,379.9$	15.8	254.1	$3,486.5$
Pacific cod	297.1	210.6	$8,816.8$	$23,401.0$	8.3	381.3	$33,115.0$
Pollock	58.7	60.6	$8,326.4$	$28,920.7$	0.7	184.9	$37,552.0$
Sablefish	0.1	$1,305.5$	13.5	7.0	32.4	48.5	$1,407.0$
Rockfish	393.7	38.3	173.2	432.5	10.4	$1,128.2$	$2,176.4$
Other	0.0	1.1	45.4	120.3	0.0	0.9	167.6
Grand total	$10,350.7$	$2,235.0$	$33,650.8$	$109,201.9$	115.1	$6,607.8$	$162,161.3$

[Part B]
Estimated First Wholesale Price /metric ton Round Weight Equivalent

$$
\begin{array}{llllll}
562.53 & 1,275.62 & 847.34 & 447.83 & 4,597.82 & 791.23
\end{array}
$$

[Part C]
Opportunity Cost Estimates of Discards in U.S.\$

Target	Atka	Greenland	Pacific				Allocated
Fishery	mackerel	turbot	cod	Pollock	Sablefish	Rockfish	total
Atka mackerel	5,398,370.	17,195	1,872,689	119,150	138	3,628,154	11,035,695
Yellowfin sole	0	7,335	8,211,826	17,575,433	0	24	25,794,618
Greenland turbot	450	470,729	3,457	9,454	216,787	18,420	719,297
Rock sole	0	11,174	3,185,210	6,452,147	1,609	862	9,651,003
Other flounder	2,138	283,086	517,750	1,065,786	72,416	201,083	2,142,258
Pacific cod	167,111	268,633	7,470,793	10,479,679	38,024	301,664	18,725,904
Pollock	33,009	77,341	7,055,258	12,951,557	3,172	146,314	20,266,652
Sablefish	34	1,665,271	11,439	3,144	149,153	38,359	1,867,400
Rockfish	221,491	48,907	146,785	193,669	47,817	892,689	1,551,358
Other	0	1,339	38,435	53,887	0	712	94,374
Grand total	5,822,602	2,851,011	28,513,643	48,903,905	- 529,117	5,228,282	91,848,560

Table 67. - (continued).
[Part D]
Retained Allocated Species or Species Groups

Target Fishery		Arrowtooth flounder	Yellowfin sole	Greenland turbot	Rock sole	Other flounder
Atka mackerel	58,224.0	0.0	0.0	35.1	10.5	0.0
Yellowfin sole	0.0	66.1	104,385.1	0.0	2,629.4	4,629.4
Greenland turbot	0.3	65.2	0.0	6,368.1	0.1	28.3
Rock sole	0.1	28.3	1,862.4	2.8	16,804.8	847.2
Other flounder	0.0	0.0	306.3	24.0	424.1	3,787.0
Pacific cod	64.6	231.3	642.9	163.8	487.4	710.1
Pollock	5.8	177.4	283.4	0.3	592.1	994.2
Sablefish	0.0	0.0	0.0	204.3	1.1	6.8
Rockfish	944.8	57.6	46.0	316.5	1.4	1.6
Other	0.0	0.0	102.9	4.4	0.3	0.9
Grand total	59,239.5	625.9	107,628.9	7,119.3	20,951.1	11,005.4

Target	Pacific					Grand
Fishery	$\underline{\text { cod }}$	Pollock	Sablefish	Rockfish	Other	total
Atka mackerel	$5,165.0$	54.0	0.7	$1,583.5$	23.1	$65,096.0$
Yellowfin sole	$8,395.1$	$2,040.9$	0.0	0.0	135.6	$122,281.6$
Greenland turbot	105.5	0.1	452.1	110.9	0.7	$7,131.2$
Rock sole	$1,884.0$	969.1	1.2	0.0	41.1	$22,440.9$
Other flounder	$1,063.9$	67.0	15.0	24.8	5.0	$5,717.1$
Pacific cod	$140,307.1$	$1,453.4$	108.5	159.2	$1,349.5$	$145,677.7$
Pollock	$5,744.6$	$1,308,291.6$	1.0	33.1	167.6	$1,316,290.9$
Sablefish	11.8	0.0	$1,702.4$	240.5	$\ddots 3.1$	$2,170.1$
Rockfish	297.2	16.5	67.5	$10,664.8$	0.6	$12,414.4$
Other	39.6	0.0	0.0	0.7	161.3	310.1
Grand total	$163,014.0$	$1,312,892.4$	$2,348.3$	$12,817.4$	$1,887.7$	$1,699,530.0$

Table 67. - (continued).
[Part E]
Estimated First Wholesale Price/(t) of Catch [for all retained species] ${ }^{14}$

| Target | Atka
 mackerel | Arrowtooth
 flounder | Yellowfin
 sole | Greenland
 turbot | Rock sole | Other
 flounder |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Atka mackerel | 562.53 | 165.06 | 0.00 | $1,252.90$ | $2,806.74$ | $1,435.71$ |
| Yellowfin sole | 0.00 | 86.96 | 645.58 | $1,256.61$ | 674.49 | 824.05 |
| Greenland turbot | 397.00 | 168.78 | 694.53 | $1,275.62$ | 708.35 | $2,052.19$ |
| Rock sole | 583.68 | 129.42 | 679.83 | $1,257.20$ | $2,800.51$ | $1,506.58$ |
| Other flounder | 623.14 | 164.04 | 668.70 | $1,273.06$ | $1,036.32$ | $1,384.28$ |
| Pacific cod | 599.77 | 163.51 | 513.05 | $1,280.87$ | $2,356.77$ | $1,557.12$ |
| Pollock | 601.18 | 75.08 | 611.71 | $1,341.60$ | $2,382.08$ | 227.20 |
| Sablefish | 0.00 | 0.00 | 0.00 | $1,306.53$ | 862.68 | $1,998.95$ |
| Rockfish | 554.29 | 164.02 | 674.28 | $1,259.43$ | $2,850.04$ | $1,446.54$ |
| Other | 0.00 | 164.21 | 645.37 | $1,265.78$ | $2,475.73$ | $1,527.81$ |

| Target | Pacific | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Fishery | cod | Pollock | Sablefish | Rockfish | Other |
| Atka mackerel | 854.78 | $1,820.25$ | $3,800.56$ | 840.91 | 523.53 |
| Yellowfin sole | 784.10 | 373.96 | $3,895.87$ | 829.09 | 149.89 |
| Greenland turbot | 845.54 | 0.00 | $4,099.53$ | $2,971.01$ | 529.11 |
| Rock sole | 856.11 | $2,034.13$ | $3,555.46$ | 750.66 | 563.78 |
| Other flounder | 817.30 | 744.86 | $4,299.36$ | 850.99 | 820.96 |
| Pacific cod | 847.34 | 631.25 | $4,463.25$ | $1,936.33$ | 562.87 |
| Pollock | 765.28 | 447.83 | $4,623.53$ | $1,720.32$ | 148.69 |
| Sablefish | 805.53 | 905.41 | $4,597.82$ | $3,545.23$ | 510.79 |
| Rockfish | 837.72 | $2,567.85$ | $3,738.18$ | 791.23 | 568.43 |
| Other | 841.31 | $1,661.32$ | 0.00 | $3,334.99$ | 729.51 |

[^9]Table 67. - (continued).
[Part F]
Total Retained Value

Target Fishery	Aka mackerel	Arrowtooth flounder	Yellowfin sole	Greenland turbot	Rock sole	Other flounder
Atka mackerel	32,752,758	0	0	43,977	29,527	57
Yellowfin sole	0	5,745	67,388,913	0	1,773,524	3,814,832
Greenland turbot	103	11,006	21	8,123,301	35	57,995
Rock sole	41	3,665	1,266,115	3,482	47,062,122	1,276,360
Other flounder	0	0	204,816	30,541	439,503	5,242,324
Pacific cod	38,727	37,821	329,830	209,807	1,148,595	1,105,633
Pollock	3,463	13,320	173,340	402	1,410,453	225,871
Sablefish	0	0	0	266,963	906	13,633
Rockfish	523;715	9,449	30,990	398,597	3,905	2,242
Other	0	0	66,389	5,620	743	1,406
Grand total	33,318,807	81,007	69,460,415	9,082,691	51,869,314	11,740,352

| Target | Pacific | | | | | Grand Retained/Discard | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Fishery | $\underline{\text { cod }}$ | Pollock | Sablefish | Rockfish | Other | total | Value Ratio |
| Atka mackerel | $4,414,947$ | 98,275 | 2,774 | $1,331,598$ | 12,094 | $38,686,007$ | 3.5 |
| Yellowfin sole | $6,582,629$ | 763,204 | 0 | 0 | 20,328 | $80,349,177$ | 3.1 |
| Greenland turbot | 89,196 | 0 | $1,853,357$ | 329,396 | 392 | $10,464,802$ | 14.5 |
| Rock sole | $1,612,920$ | $1,971,174$ | 4,089 | 0 | 23,160 | $53,223,128$ | 5.5 |
| Other flounder | 869,550 | 49,868 | 64,275 | 21,122 | 4,138 | $6,926,137$ | 3.2 |
| Pacific cod | $118,887,827$ | 917,471 | 484,129 | 308,206 | 759,599 | $124,227,644$ | 6.6 |
| Pollock | $4,396,250$ | $585,892,214$ | 4,624 | 56,857 | 24,919 | $592,201,713$ | 29.2 |
| Sablefish | 9,521 | 0 | $7,827,513$ | 852,486 | 1,604 | $8,972,626$ | 4.8 |
| Rockfish | 248,996 | 42,344 | 252,290 | $8,438,310$ | 318 | $9,951,155$ | 6.4 |
| Other | 33,349 | 0 | 0 | 2,268 | 117,655 | 227,430 | 2.4 |
| Grand total | $137,145,186$ | $589,734,550$ | $10,493,050$ | $11,340,241$ | 964,206 | $925,229,819$ | 10.1 |

Table 68. - Derivation of "Opportunity Cost" and Retained/Discard Value Ratios for GOA Groundfish Fisheries [Part A]
Discard Allocated Species or Species Groups (t)

Target	Atka	Pacific				Allocated
fishery	mackerel	cod	Pollock	Sablefish	Rockfish	total
Atka mackerel	245.4	96.8	14.1	0.0	265.3	621.5
Arrowtooth flounder	0.0	75.7	129.6	21.0	6.7	233.0
Deepwater flatfish	1.5	1,087.5	1,302.6	514.8	820.5	3,726.8
Shallow flatish	0.0	474.7	365.3	13.6	27.2	880.8
Pacific cod	0.5	776.2	2,012.1	12.8	113.1	2,914.8
Pollock	0.4	178.2	2,853.7	4.8	8.8	3,045.9
Sablefish	0.0	227.1	10.4	203.9	972.3	1,413.6
Rockfish	26.2	138.4	97.2	93.2	2,492.7	2,847.7
Other	0.0	0.0	0.2	0.0	1.1	1.4
Grand total	273.9	3,054.5	6,785.2	864.0	4,707.7	15,685.4

[Part B]
Estimated First Wholesale Price / metric ton Round Weight Equivalent (t)
$687.55 \quad 1,032.03 \quad 473.48 \quad 4,508.26$
894.92

[Part C]

Opportunity Cost Estimates of Discards in U.S.\$

Targct	Atka mackerel	Pacific	cod	Pollock	Sablefish	Rockfish

Table 68. - (continued).
[Part D]

Target fishery	Atka mackerel	Arrowtooth flounder	Deepwater flatfish	Shallow flatfish	Pacific cod
Atka mackerel	3,018.3	0.0	7.8	0.0	51.9
Arrowtooth flounder	0.0	284.3	173.6	75.0	1.5
Deepwater flatfish	2.4	28.4	6,062.2	386.0	358.3
Shallow flatfish	0.0	34.6	563.1	1,853.5	21.1
Pacific cod	1.3	0.8	339.2	411.7	43,525.0
Pollock	8.2	47.8	119.3	131.8	702.2
Sablefish	0.0	22.6	15.1	0.0	63.8
Rockfish	231.6	39.1	106.4	14.1	97.4
Other	0.0	0.0	1.0	0.5	0.0
Grand total	3,261.8	457.6	7,387.6	2,872.4	44,821.2

| Target | | | | | Grand |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| fishery | Pollock | Sablefish | Rockfish | Other | total |
| Atka mackerel | 0.0 | 0.5 | 1.4 | 0.0 | $3,079.8$ |
| Arrowtooth flounder | 56.6 | 27.5 | 6.4 | 17.4 | 642.3 |
| Deepwater flatfish | 63.8 | 735.7 | 519.4 | 11.3 | $8,167.4$ |
| Shallow flatfish | 150.1 | 105.0 | 40.7 | 4.4 | $2,772.4$ |
| Pacific cod | 217.0 | 49.7 | 151.3 | 14.2 | $44,710.1$ |
| Pollock | $103,966.4$ | 11.2 | 10.1 | 11.1 | $105,008.2$ |
| Sablefish | 0.0 | $20,072.2$ | 696.7 | 3.9 | $20,874.3$ |
| Rockfish | 3.2 | 950.4 | $9,887.3$ | 0.3 | $11,329.7$ |
| Other | 0.0 | 0.1 | 0.0 | 2.8 | 4.4 |
| Grand total | $104,457.1$ | $21,952.4$ | $11,313.3$ | 65.3 | $196,588.5$ |

Table 68. - (continued).

[Part E]

Estimated First Wholesale Price/(t) of Catch, [for all retained species] (\$) ${ }^{15}$

Target	Atka	Arrowtooth	Deepwater	Shallow	Pacific
fishery	mackerel	flounder	flatisish	flatfish	$\underline{\text { cod }}$
Atka mackerel	687.55	0.00	3,013.96	985.74	696.48
Arrowtooth flounder	0.00	251.19	2,953.95	1,117.37	564.04
Deepwater flatish	736.32	393.47	3,270.00	1,138.39	812.35
Shallow flatish	0.00	340.99	2,777.69	1,211.93	833.30
Pacific cod	691.06	271.10	2,980.49	1,361.39	1,032.03
Pollock	691.06	404.26	2,546.36	1,283.76	1,055.58
Sablefish	0.00	164.17	3,629.70	1,233.13	826.84
Rockfish	736.32	164.10	3,241.77	783.13	825.17
Other	0.00	0.00	3,200.12	1,222.20	1,029.40

Target

| fishery | Pollock | | Sablefish | | Rockfish |
| :--- | ---: | ---: | ---: | ---: | ---: |\quad Other

[^10]Table 68. - (continued).
[Part F]
Total Retained Value (\$)

Target	Atka	Arrowtooth	Deepwater	Shallow	Pacific
fishery	$\underline{\text { mackerel }}$	$\underline{\text { flounder }}$	flatfish	$\underline{\text { flatfish }}$	$\underline{\text { cod }}$
Atka mackerel	$2,075,218$	0	23,388	0	36,133
Arrowtooth flounder	0	71,403	512,747	83,803	852
Deepwater flatfish	1,775	11,171	$19,823,231$	439,362	291,033
Shallow flatfish	0	11,791	$1,564,228$	$2,246,264$	17,616
Pacific cod	878	222	$1,011,072$	560,416	$44,919,106$
Pollock	5,660	19,336	303,755	169,212	741,260
Sablefish	0	3,715	54,772	0	52,761
Rockfish	170,561	6,411	344,795	11,003	80,355
Other	0	0	3,104	562	0
Grand total	$2,254,092$	124,050	$23,641,092$	$3,510,622$	$46,139,115$

Target fishery	Pollock	Sablefish	Rockfish	Other	Grand total	Retained/Discard Value Ratio
Atka mackerel	0	2,279	3,017	0	2,140,036	4.2
Arrowtooth flounder	20,384	126,354	8,746	3,836	828,125	3.4
Deepwater flatiish	39,897	3,242,561	1,189,930	2,489	25,041,446	5.2
Shallow flatish	61,788	493,830	77,339	1,131	4,473,986	6.0
Pacific cod	134,374	214,193	205,404	15,552	47,061,217	24.6
Pollock	49,225,997	50,789	15,754	2,711	50,534,474	32.3
Sablefish	0	90,490,696	1,565,032	2,246	92,169,222	45.4
Rockfish	1,223	4,102,761	8,848,360	166	13,565,636	4.7
Other	0	540	32	6,797	11,034	9.8
Grand total	49,483,663	98,724,004	11,913,613	34,927	235,825,177	16.1

THIS PAGE INTENTIONALLY LEFT BLANK

Citations

Alverson, D. L., M. H. Freeberg, S. A. Murawski, and J. G. Pope. 1994. A global assessment of fisheries bycatch and discard. FAO Fisheries Tech. Pap. 339. Rome, FAO, 233 p.

Anon. 1994. Report of the working group on ecosystem effects of fishing activities. International Council for the Exploration of the Sea, ICES CM 1994/Assess/Env:1, 109 p .

Baumol, W.J. 1977. Economic Theory and Operations Analysis. Prentice-Hall, Inc.
Berger, J. D,. , R. Nelson, Jr., J. Wall, H. Weikart, and B. Maier. 1988. Summary of U.S. observer sampling of foreign and joint-venture fisheries in the northeast Pacific Ocean and eastern Bering Sea, 1986. U.S. Dep. Commer., NOAA Tech. Memo. NMFSF/NW\&128, 167 p.

Berger, J. D., J,. E. Smoker, and K. A. King. 1986. Foreign and joint venture catches and allocations in the Pacific Northwest and Alaska fishing area under the Magnuson Fishery Conservation and Management Act, 1977-84. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-F/NWC-99, 53 p.

Berger, J. D., J. Wall, and R. Nelson, Jr. 1987. Summary of U.S. observer sampling of foreign and joint-venture fisheries in the northeast Pacific Ocean and eastern Bering Sea, 1985. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-F/NWC-112, 169 p.

Berger, J., and H. Weikart. 1988. Summary of U.S. observer sampling of foreign and jointventure fisheries in the northeast Pacific Ocean and eastern Bering Sea, 1987. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-F/NWC-148, 141 p.

Berger, J., and H. Weikart. 1989. Summary of U.S. observer sampling of foreign and jointventure fisheries in the northeast Pacific Ocean and eastern Bering Sea, 1988. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-F/NWC-172, 118 p.

Browder, J.A. 1983. A simulation model of a near-shore marine ecosystem of the northcentral Gulf of Mexico. In: K.W. Turgeon (ed.), Marine ecosystem modeling: proceedings from a workshop held April 6-8, 1982 in Frederick, MD, by the U.S., p. 179-222.

Chopin, F.S. , and T. Arimoto. 1995. The condition of fish escaping from fishing gears--a review. Fish. Res. 21:315-327.

Christie, W .J. 1993. Developing the concept of sustainable fisheries. J. Aquat. Ecosystem Health 2:99-109.

Climo, L. 1993. The status of cliff-nesting seabirds at St. Paul Island, Alaska in 1992. U.S. Fish and Wildl. Serv. Rep., AMNWR 93/15. Homer, AK 53 p.

Daan, N. 1980. A review of replacement of depleted stocks by other species and the mechanisms underlying such replacement. Rapp. P.-v. Reun. Cons. int. Explor. Mer 177:405421.

Dragoo, B.K. and K. Sundseth. 1993. The status of northern fulmars, kittiwakes, and murres at St. George Island, Alaska, in 1992. U.S. Fish and Wildl. Serv. Rep., AMNWR 93/10. Homer, AK. 92 p.

Evans, S.M., J.E. Hunter, Elizal, and R.I. Wahju. 1994. Composition and fate of the catch and bycatch in the Fame Deep (North Sea) Nephrops fishery. ICES J. Mar. Sci. 51:155-168.

Forrester, C. R., R. G. Bakkala, K. Okada, and J. E. Smith. 1983. Groundfish, shrimp, and herring fisheries in the Bering Sea and Northeast Pacific - historical catch statistics, 1971-1976. International North Pacific Fisheries Commission Bull. No. 41, 6640 Northwest Marine Drive, Vancouver, Canada, V6T 1X2, 100 p.

Fritz, L. W. 1993. Trawl locations of walleye pollock and Atka mackerel fisheries in the Bering Sea, Aleutian Islands and Gulf of Alaska from 1977-92. U.S. Dep. Commer., NOAA, NMFS,. AFSC Processed Rep. 98-08, 162 p.

Fritz, L. W. In press. Juvenile walleye pollock (Theragra chalcogramma) bycatch in commercial groundfish fisheries in Alaskan waters. Proceedings of a workshop on the Importance of pre-recruit walleye pollock to the Bering Sea and north Pacific ecosystems. NOAA Tech. Rep.

Fritz, L.W., R.C. Ferrero, and R.J. Berg. 1994. The threatened status of Steller sea lions (Eumetopias jubatus) under the Endangered Species Act: effects on Alaska groundfish fisheries management. Manuscript presented at the Fisheries Management: Global Trends Symposium, June 1994, Seattle, WA.

Guttormsen, M., R. Narita, and J. Berger. 1990. Summary of U.S. observer sampling of foreign and joint-venture fisheries in the northeast Pacific Ocean and eastern Bering Sea, 1989. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-F/NWC-189, 84 p.

Guttormsen, M., R. Narita, and J. Berger. 1992. Summary of U.S. observer sampling of joint-venture fisheries in the northeast Pacific Ocean and eastern Bering Sea, 1990. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC4, 78 p.

Hatch, S.A., G.V. Byrd, D.B. Irons, and G.L. Hunt, Jr. 1993. Status and ecology of kittiwakes (Rissa tridactyla and R. brevirostris) in the North Pacific. In: K.Vermeer, K.T. Briggs, K.H. Morgan, and D. Siegel-Causey (eds). The status, ecology, and conservation of marine birds of the North Pacific. Can. Wildl. Serv. Spec. Publ., Ottawa.

Hill, B. J., and T. J. Wassenberg. 1990. Fate of Discards from Prawn Trawlers in Torres Strait. Australian Journal of Marine and Freshwater Research 41: 53-64.

Hoag, S.H. 1975. Survival of halibut released after capture by trawls. Int. Pac. Hal. Comm. Sci. Rep. 57, 18p.

Hunt, G.L., Jr., B. Burgeson, and G.A. Sanger. 1981. Feeding ecology of seabirds of the eastern Bering Sea. pp. 629-648. In: D.W. Hood, and J.A. Calder (eds), The eastern Bering Sea shelf: oceanography and resources, Vol. II. Office of Marine Pollution Assessment, National Oceanic and Atmospheric Administration.

Jones, J.B. 1992. Environmental impact of trawling on the seabed:, a review. N. Z. J. Mar. Freshwater Res. 26:59-67.

Kaiser, M. J., and B.E. Spencer. 1994. Fish scavenging behavior in recently trawled areas. Mar. Ecol. Prog. Ser. 112:41-49.

Kennelly, S. J., D. Watkins, and J. R. Craig. 1990. Mortality of discarded spanner crabs Ranina ranina (Linnaeus) in a tangle-net fishery -- laboratory and field experiments. Journal of Experimental Marine Biology and Ecology 140: 39-48.

Kinoshita, R. K., A. Grieg, and J. M. Terry. 1995. Economic status of the groundfish fisheries off Alaska, 1993. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC54, 108 p .

Kinoshita, et al., Economic Status of the. Groundfish Fisheries Off Alaska, 1994, U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-00, XX p. (In prep.).

Livingston, P.A., A. Ward, G.M. Lang, and M-S. Yang. 1993. Groundfish food habits and predation on commercially important prey species in the eastern Bering Sea from 1987 to 1989. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-11, 192p.

Livingston, P.A., L-L. Low, and R.J. Marasco. 1994. Eastern Bering Sea ecosystem trends. Paper presented at the Oct. 8-11, 1994, Symposium on Large Marine Ecosystems of the Pacific, Qingdao,China.

Murai, S., H. A. Gangmark, and R. R. French. 1981. All-nation removals of groundfish, herring, and shrimp from the eastern Bering Sea and northeast Pacific Ocean, 196480. US. Dep. Commer., NOAA Tech. Memo. NMFS-F/NWC-14, 40 p.

Murawski, S. A., and F. M. Serchuk. 1989. Environmental Effects of Offshore Dredge Fisheries for Bivalves. ICES C.M. 1989/K: 27.

Neilson, J. D., K. G. Waiwood, and S. J. Smith. 1989. Survival of Atlantic halibut (Hippoglossus hippoglossus) caught by longline and otter trawl gear. Canadian Journal of Aquatic Sciences 46: 887-897.

Nelson, R. Jr., R. French, and J. Wall. 1981. Sampling by U. S. observers on foreign fishing vessels in the eastern Bering Sea and Aleutian Islands region, 1977-78. Mar. Fish. Rev. 43(5): 1-19.

Niggol, K. 1982. Data on fish species from Bering Sea and Gulf of Alaska. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-F/NWC-29, 125 p.

Pikitch, E.K., and D.L. Erickson. 1993. Development and evaluation of a methodological approach for estimating the post-capture survival of trawl-caught Pacific halibut. FRI-UW-9304.

Queirolo, L. E. 1986. A Methodology for Evaluating the Economic Impact on Directed Fisheries of By-catch Losses in the Foreign and Joint-Venture Groundfish Fisheries. (Ph.D. dissertation) Oregon State University. 179p.

Queirolo, L. E., R. S. Johnston, and Z. Zhang. Competition and the market for access under extended jurisdiction. N. J. Bus. Econ. (In review).

Shelton, P.A. 1992. Detecting and incorporating multispecies effects into fisheries management in the northwest and southeast Atlantic. In: A.I.L. Payne, Brink, K.H., Mann, K.H., and R. Hilbom (eds), Benguela Trophic Functioning. S. Afr. J. mar. Sci. 12:723-737.

Shirley, T. 1990. Handling mortality of Dungeness crabs. Final report to Alaska Dept. Fish and Game, 15 April, 1990. Project No. R/06-29.

Sproul, J. T., and L. E. Queirolo. 1994. Trade and management: Exclusive economic zones and the changing Japanese surimi market. Mar. Fish. Rev,. 56(1):31-39.

Stevens, B. G. 1990. Survival of king and tanner crabs captured by commercial sole trawls. Fishery Bulletin 88: 731-744.

Stevens, B.G., and J.A. Haaga. 1994. Ocean dumping of seafood processing wastes: Comparisons of epibenthic megafauna sampled by submersible in impacted and nonimpacted Alaskan bays and estimation of waste decomposition rate. Unpublished manuscript, National Marine Fisheries Service, Kodiak Laboratory, P.O. Box 1638, Kodiak, AK 99615.

Stevens, B.G., and R.A. MacIntosh. 1993. Estimation of mortality rates for king crab captured in finfish trawl and crab pot fisheries. Presented at the NMFS Stock Assessment Workshop, Woods Hole, MA, July 19-22, 1993.

Thomas, G.L. 1994. Economically and ecologically responsible fish waste recycling in Orca Inlet, Prince William Sound, Alaska. Research proposal by Prince William Sound Science Center, P.O. Box 705, Cordova, AK 99574.

Thompson, G. G. 1994. Pacific cod. In Stock assessment and fishery evaluation report for the groundfish resources of the Bering Sea/Aleutian Islands region as projected for 1995. North Pacific Fishery Management Council, 605 W. 4th Ave., Rm. 306, Anchorage, AK, 99501-2252, 31 p.

Thompson, G. G, and H. H. Zenger. 1994. Pacific cod. In Stock assessment and fishery evaluation report for the groundfish resources of the Gulf of Alaska as projected for 1995. North Pacific Fishery Management Council, P. 0 Box 103136, Anchorage, AK, 99510, 39 p.
van Beek, F. A., P. I. van Leeuwen, and A. D. Rijnsdorp. 1989. On the survival of plaice, and sole discards in the otter trawl and beamtrawl fisheries in the North Sea. ICES C.M. 1989/G: 46.

Walsh, J.J., and C.P. McRoy. 1986: Ecosystem analysis in the southeastern Bering Sea. Cont. Shelf Res. 5:259-288.

Wassenburg, T-J., and B.J. Hill. 1987. Feeding by the sand crab, Portunus pelagicus, on material discarded from prawn trawlers in Moreton Bay, Australia. Mar. Biol. 95:387-393.

Wassenberg, T. J., and B. J. Hill. 1989. The effect of trawling and subsequent handling on the survival rates of the by-catch of prawn' trawlers in Moreton Bay, Australia. Fisheries Research 7: 99-110.

Wassenburg, T.J., and B.J. Hill. 1990. Partitioning of material discarded from prawn trawlers in Moreton Bay. Aust. J. Mar. Freshwat. Res. 41:27-36.

Wespestad, V., and P. Dawson. 1991. Walleye pollock. In Stock assessment and fishery evaluation report for the groundfish resources of the Bering Sea/Aleutian Islands region as projected for 1992. North Pacific Fishery Management Council, 605 W. 4th Ave., Rm. 306, Anchorage, AK, 99501-2252, 27 p.

Williams, G.H. 1989. Analysis of halibut bycatch condition data for discard mortality rate estimation. In: Stock assessment and fishery evaluation report for the 1990 Gulf of Alaska groundfish fishery. North Pacific Fishery Management Council, P.O. Box 103136, Anchorage, AK 99510

Williams, G.H. 1994. Pacific halibut discard mortality rates in the 1993 groundfish fisheries off Alaska. In: Stock assessment and fishery evaluation report for the groundfish fisheries of the Bering Sea/Aleutian Islands regions as projected for 1995. North Pacific Fishery Management Council, P.O. Box 103136, Anchorage, AK 99510

Williams, G.H. and T.K. Wilderbuer. 1993. Pacific halibut discard mortality rates in the 1990-1992 groundfish fisheries off Alaska, with recommendations for 1994. In: Stock assessment and fishery evaluation report for the groundfish resources of the Bering Sea/Aleutian Islands regions as projected for 1994. North Pacific Fishery Management Council, P.O. Box 103136, Anchorage, AK 99510.

Yang, J. 1982. A tentative analysis of the trophic levels of North Sea fish. Mar. Ecol. Prog. Ser. 7:247-252.

Yang, M-S. 1993. Food habits of the commercially important groundfishes in the Gulf of Alaska in 1990. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-22, 150 p.

Yang, M-S. 1995. Diets of the commercially important groundfishes in the Aleutian Islands in 1991. Unpublished manuscript. Alaska Fisheries Science Center, 7600 Sand Point Wy. NE, Bldg. 4, Seattle, WA 98115.

[^0]: ${ }^{1}$ Beginning in January 1993, Pacific salmon bycatches have been retained in the BSAI groundfish trawl fisheries under an experimental program whereby it is processed and delivered to agencies which distribute food to the needy through food bank programs.
 ${ }^{2}$ Applying average weights of $4.3 \mathrm{~kg} /$ chinook salmon (O ncorhynchus tshaw ytscha), $2.8 \mathrm{~kg} /$ other salmon, $1.6 \mathrm{~kg} /$ red king crab (Paralithodes camtschaticus), $1.1 \mathrm{~kg} /$ other king crab, $0.3 \mathrm{~kg} /$ bairdi Tanner crab (Chionoecetes bairdi), and $0.1 \mathrm{~kg} /$ other Tanner crab in BSAI to numbers caught in Table 39; 1994 NMFS observer data.
 ${ }^{3}$ Applying average weights of $3.6 \mathrm{~kg} /$ chinook salmon, $3.2 \mathrm{~kg} /$ other salmon, 1.4 $\mathrm{kg} /$ red king crab, $0.2 \mathrm{~kg} /$ other king crab, $0.4 \mathrm{~kg} /$ bairdi Tanner crab, and $0.6 \mathrm{~kg} /$ other Tanner crab in GOA to numbers caught in Table 44; 1994 NMFS observer data.

[^1]: ${ }^{4}$ Assuming $0.4 \mathrm{gC} / 1 \mathrm{~g}$ dry weight and 0.5 g dry weight/lg wet weight, and total middle shelf area $=4 \times 10^{5} \mathrm{~km}^{2}$ and outer shelf area $=2.2 \times 10^{5} \mathrm{~km}^{2}$.

[^2]: ${ }^{5}$ Value net of production costs would be the theoretically correct measure with which to make these comparisons. Often net values are not available, in which case gross values are employed.

[^3]: ${ }^{6}$ Obviously, very small fish could be frozen in-the-round, however, it is unlikely a market could be found for such a product.
 ${ }^{7}$ A vessel may undertake actions which exert some control over the size composition of its catch, although trawling is; by definition, a non-selective technology. Further, if space were no limitation, a mixture of machines could permit mechanical processing of most of the pollock. However, physical limitations do constrain the options available to most vessels and cost considerations, touched on in the next section, also dictate utilization decisions.

[^4]: ${ }^{8}$ The European community, in this context, is distinct from the European Union (EU), here including Denmark, Sweden, Norway, Germany, United Kingdom, Netherlands, Portugal, Spain, France, Italy, and Ireland.

[^5]: Sources: U.S. Dep. Commer., Bur. of the Census: database from Natl. Mar.
 Fish. Serv., Fish. Stat. Div., Silver Spring, MD 20910: and
 Alaska Fish. Sci. Cent., 7600 Sand Point Way NE, BIN C15700,
 Seattle, WA 98115-0090.

[^6]: ${ }^{11}$ By definition, "opportunity cost" is the value of the resource in its next best use. It is a measure of "social", not "private" cost. As the groundfish fisheries in the U.S. EEZ of the North Pacific and Bering Sea are currently managed, it is reasonable to assume that the "opportunity cost" of bycatch of a given species is appropriately measured as the foregone revenue from its use in the fishery targeting that species. This is so because the TAC is the sum of both retained and discarded catch. Thus, when a ton of catch is discarded, it reduces by a ton the total amount that can be retained. Only in the case where, for example, the bycatch occurs in fishery A, the target fishery is B, and a third fishery, say C, is limited in the catch of its target because the TAC for the species targeted in fishery B and discarded in fishery A is taken, would it be possible for the "opportunity cost" to be other than as assumed. Few such examples exist in the BSAI or GOA groundfish fisheries.

[^7]: ${ }^{12}$ "Wholesale" product value was employed rather than "exvessel" value because many of these fisheries have significant participation by catcher/processors, for which an exvessel price is neither available nor particularly relevant. Use of wholesale values also avoids the problem of "post-season" price adjustments from processor to fisherman, which may not be captured in the available exvessel price data.

[^8]: ${ }^{13}$ Discard and retained quantity estimates are derived from 1994 "blend" data. Weighted "first wholesale" price estimates are derived from Alaska Region product value files, which utilize the National Marine Fisheries Service-Alaska Department of Fish and Game Processor Survey. These data are reported annual prices, by species and product form, by either BSAI or GOA management area, No gear-type differentiation has been included.

[^9]: ${ }^{14}$ A weighted average price/ton, for all priced tons, by species, was used when no price was available for a particular target fishery and non-target retained species combination. In BSAI these included: arrowtooth flounder in the rock sole target fishery; yellowfin sole, rock sole, and cod in the "other" groundfish fishery; and "other" groundfish in the sablefish target ficherv

[^10]: ${ }^{15}$ A weighted average price/metric ton, for all priced tons, by species, was used when no price was available for a particular target fishery and non-target retained species combination. In GOA these included: Atka mackerel in the pollock and cod target fisheries; arrowtooth in the cod fishery; deepflats, shallowflats, sablefish, and rockfish in the "other" groundfish fishery; and "other" groundfish in the rockfish target fishery.

